1,239
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

PI3K Functions Downstream of Cdc42 to Drive Cancer phenotypes in a Melanoma Cell Line

, & ORCID Icon
Pages 1-13 | Received 08 Sep 2022, Accepted 08 Apr 2023, Published online: 28 Apr 2023

References

  • Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci. 2005;118(Pt 5):843–846. PubMed PMID: 15731001. DOI:10.1242/jcs.01660.
  • Aspenstrom P, Fransson A, Saras J. Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J. 2004;377(Pt 2):327–337. PubMed PMID: 14521508. DOI:10.1042/bj20031041.
  • Wennerberg K, Der CJ. Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci. 2004;117(Pt 8):1301–1312. PubMed PMID: 15020670. DOI:10.1242/jcs.01118.
  • Geyer M, Wittinghofer A. Gefs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins. Curr Opin Struct Biol. 1997;7(6):786–792. PubMed PMID: 9434896. DOI:10.1016/S0959-440X(97)80147-9.
  • Olofsson B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal. 1999;11(8):545–554. PubMed PMID: 10433515. DOI:10.1016/S0898-6568(98)00063-1.
  • Ridley AJ. Rho proteins and cancer. Breast cancer research and treatment. PubMed PMID: 14999150. 2004;84(1):13–19. DOI:10.1023/B:BREA.0000018423.47497.c6
  • Alan JK, Lundquist EA. Mutationally activated Rho GTPases in cancer. Small GTPases. 2013;4(3): PubMed PMID: 24088985. DOI:10.4161/sgtp.26530
  • Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70(3):389–399. PubMed PMID: 1643657. DOI:10.1016/0092-8674(92)90163-7.
  • Preudhomme C, Roumier C, Hildebrand MP, et al. Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin’s lymphoma and multiple myeloma. Epub 2000/05/10 PubMed PMID: 10803463 Oncogene. 2000;19(16):2023–2032. DOI:10.1038/sj.onc.1203521
  • Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. PubMed PMID: 22817889 Cell. 2012;150(2):251–263. DOI:10.1016/j.cell.2012.06.024
  • Krauthammer M, Kong Y, Ha BH, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genet. 2012;44(9):1006–1014. PubMed PMID: 22842228; PMCID: 3432702. DOI:10.1038/ng.2359.
  • Adamson P, Marshall CJ, Hall A, et al. Post-translational modifications of p21rho proteins. J Biol Chem. 1992;267(28):20033–20038. PubMed PMID: 1400319. DOI:10.1016/S0021-9258(19)88661-1.
  • Michaelson D, Silletti J, Murphy G, et al. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Bio. 2001;152(1):111–126. PubMed PMID: 11149925. DOI:10.1083/jcb.152.1.111.
  • Adamson P, Paterson HF, Hall A. Intracellular localization of the P21rho proteins. J Cell Bio. 1992;119(3):617–627. PubMed PMID: 1383236. DOI:10.1083/jcb.119.3.617.
  • Shutes A, Berzat AC, Chenette EJ, et al. Biochemical analyses of the Wrch atypical Rho family GTPases. Methods Enzymol. 2006;406:11–26. PubMed PMID: 16472646.
  • Slominski A, Wortsman J, Carlson AJ, et al. Malignant melanoma. Epub 2001/09/26 PubMed PMID: 11570904 Arch Pathol Lab Med. 2001;125(10):1295–1306. DOI:10.5858/2001-125-1295-MM
  • Ch’ng S, Tan ST. Genetics, cellular biology and tumor microenvironment of melanoma. Epub 2009/03/11 PubMed PMID: 19273108 Front Biosci(landmark Ed). 2009;14(3):918–928. DOI:10.2741/3286
  • Teixido C, Castillo P, Martinez-Vila C, et al. Molecular markers and targets in melanoma. Cells. 2021;10(9):2320. Epub 2021/09/29 PubMed PMID: 34571969; PMCID: PMC8469294. DOI:10.3390/cells10092320.
  • Ghosh P, Chin L. Genetics and genomics of melanoma. Epub 2010/02/04 PubMed PMID: 20126509; PMCID: PMC2771951 Expert Rev Dermatol. 2009;4(2):131. DOI:10.1586/edm.09.2
  • Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21(1):247–269. PubMed PMID: 16212495. DOI:10.1146/annurev.cellbio.21.020604.150721.
  • Stengel K, Zheng Y. Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Epub 2011/04/26 PubMed PMID: 21515363; PMCID: PMC3115433 Cell Signal. 2011;23(9):1415–1423. DOI:10.1016/j.cellsig.2011.04.001
  • Gadea G, Sanz-Moreno V, Self A, et al. DOCK10-mediated Cdc42 activation is necessary for amoeboid invasion of melanoma cells. Epub 2008/10/07 PubMed PMID: 18835169 Curr Biol. 2008;18(19):1456–1465. DOI:10.1016/j.cub.2008.08.053
  • Maldonado MDM, Dharmawardhane S. Targeting Rac and Cdc42 GTPases in Cancer. Epub 2018/06/03 PubMed PMID: 29858187; PMCID: PMC6004249 Cancer Res. 2018;78(12):3101–3111. DOI:10.1158/0008-5472.CAN-18-0619
  • Svensmark JH, Brakebusch C. Rho GTPases in cancer: friend or foe? Oncogene. 2019;38(50):7447–7456. Epub 2019/08/21 PubMed PMID: 31427738. DOI:10.1038/s41388-019-0963-7.
  • Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420(6916):629–635. PubMed PMID: 12478284. DOI:10.1038/nature01148.
  • Mahajan K, Mahajan NP. ACK1/TNK2 tyrosine kinase: molecular signaling and evolving role in cancers. Oncogene. 2015;34(32):4162–4167. Epub 2014/10/28 PubMed PMID: 25347744; PMCID: PMC4411206. DOI:10.1038/onc.2014.350.
  • Mahajan NP, Liu Y, Majumder S, et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA. 2007;104(20):8438–8443. PubMed PMID: 17494760; PMCID: 1895968. DOI:10.1073/pnas.0700420104.
  • Alan JK, Struckhoff EC, Lundquist EA. Multiple cytoskeletal pathways and PI3K signaling mediate CDC-42-induced neuronal protrusion in C. elegans. Small GTPases. 2013;4(4):208–220. PubMed PMID: 24149939. DOI:10.4161/sgtp.26602.
  • Fiordalisi JJ, Johnson RL 2nd, Ulku AS, et al. Mammalian expression vectors for Ras family proteins: generation and use of expression constructs to analyze Ras family function. Methods Enzymol. 2001;332:3–36. Epub 2001/04/18 PubMed PMID: 11305105. DOI:10.1016/s0076-6879(01)32189-4.
  • Andoniou CE, Lill NL, Thien CB, et al. The Cbl proto-oncogene product negatively regulates the Src-family tyrosine kinase Fyn by enhancing its degradation. Mol Cell Biol. 2000;20(3):851–867. PubMed PMID: 10629042. DOI:10.1128/MCB.20.3.851-867.2000.
  • Berzat AC, Buss JE, Chenette EJ, et al. Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif. J Biol Chem. 2005;280(38):33055–33065. PubMed PMID: 16046391. DOI:10.1074/jbc.M507362200.
  • Prefontaine GG, Walther R, Giffin W, et al. Selective binding of steroid hormone receptors to octamer transcription factors determines transcriptional synergism at the mouse mammary tumor virus promoter. J Biol Chem. 1999;274(38):26713–26719. PubMed PMID: 10480874. DOI:10.1074/jbc.274.38.26713.
  • Tetley GJN, Murphy NP, Bonetto S, et al. The discovery and maturation of peptide biologics targeting the small G-protein Cdc42: a bioblockade for Ras-driven signaling. Epub 2020/01/22 PubMed PMID: 31959628; PMCID: PMC7049977 J Biol Chem. 2020;295(9):2866–2884. DOI:10.1074/jbc.RA119.010077
  • John J, Sohmen R, Feuerstein J, et al. Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry. 1990;29(25):6058–6065. Epub 1990/06/26. PubMed PMID: 2200519. DOI:10.1021/bi00477a025.
  • Muller PM, Rademacher J, Bagshaw RD, et al. Systems analysis of RhoGEF and RhoGAP regulatory proteins reveals spatially organized RAC1 signalling from integrin adhesions. Epub 2020/03/24 PubMed PMID: 32203420 Nat Cell Biol. 2020;22(4):498–511. DOI:10.1038/s41556-020-0488-x
  • Xiao XH, Lv LC, Duan J, et al. Regulating Cdc42 and Its Signaling Pathways in Cancer: small Molecules and MicroRNA as new treatment candidates. Molecules. 2018;23(4):787. Epub 2018/03/30 PubMed PMID: 29596304; PMCID: PMC6017947. DOI:10.3390/molecules23040787.
  • Rodgers SJ, Ferguson DT, Mitchell CA, et al. Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases. Biosci Rep. 2017; 37(1): Epub 2017/01/14 PubMed PMID: 28082369; PMCID: PMC5301276. DOI:10.1042/BSR20160432.
  • Zheng Y, Bagrodia S, Cerione RA. Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85. J Biol Chem. 1994;269(29):18727–18730. Epub 1994/07/22. PubMed PMID: 8034624. DOI:10.1016/S0021-9258(17)32226-3.
  • Fritsch R, de Krijger I, Fritsch K, et al. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. Cell. 2013;153(5):1050–1063. PubMed PMID: 23706742. DOI:10.1016/j.cell.2013.04.031.
  • Chu JY, Dransfield I, Rossi AG, et al. Non-canonical PI3K-Cdc42-Pak-Mek-Erk Signaling promotes immune-complex-induced apoptosis in human neutrophils. Cell Rep. 2016;17(2):374–386. Epub 2016/10/06 PubMed PMID: 27705787; PMCID: PMC5067281. DOI:10.1016/j.celrep.2016.09.006.
  • Beemiller P, Zhang Y, Mohan S, et al. A Cdc42 activation cycle coordinated by PI 3-kinase during Fc receptor-mediated phagocytosis. ?Mol Biol Cell. 2010;21(3):470–480. Epub 2009/12/04 PubMed PMID: 19955216; PMCID: PMC2814791. DOI:10.1091/mbc.e08-05-0494.
  • Guo F, Zheng Y. Rho family GTPases cooperate with p53 deletion to promote primary mouse embryonic fibroblast cell invasion. Oncogene. 2004;23(33):5577–5585. Epub 2004/05/04 PubMed PMID: 15122327. DOI:10.1038/sj.onc.1207752.
  • Guo F, Zheng Y. Involvement of Rho family GTPases in p19Arf- and p53-mediated proliferation of primary mouse embryonic fibroblasts. Mol Cell Biol. 2004;24(3):1426–1438. Epub 2004/01/20 PubMed PMID: 14729984; PMCID: PMC321455. DOI:10.1128/MCB.24.3.1426-1438.2004.
  • Li Z, Dong X, Wang Z, et al. Regulation of PTEN by Rho small GTPases. Nat Cell Biol. 2005;7(4):399–404. Epub 2005/03/29 PubMed PMID: 15793569. DOI:10.1038/ncb1236.