1,832
Views
0
CrossRef citations to date
0
Altmetric
Review

Rab6-mediated retrograde trafficking from the Golgi: the trouble with tubules

ORCID Icon & ORCID Icon
Pages 26-44 | Received 15 Jun 2023, Accepted 15 Jul 2023, Published online: 24 Jul 2023

References

  • Béthune J, Wieland FT. Assembly of COPI and COPII vesicular coat proteins on membranes. Annu Rev Biophys. 2018;47:63–83. doi: 10.1146/annurev-biophys-070317-033259
  • Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J. 2021;288(1):36–55. doi: 10.1111/febs.15453
  • Galea G, Simpson JC. High-content analysis of Rab protein function at the ER-Golgi interface. Bioarchitecture. 2015;5(3–4):44–53. doi: 10.1080/19490992.2015.1102826
  • Zahraoui A, Touchot N, Chardin P, et al. The human Rab genes encode a family of GTP-binding proteins related to yeast YPT1 and SEC4 products involved in secretion. J Biol Chem. 1989;264(21):12394–12401. doi: 10.1016/S0021-9258(18)63872-4
  • Goud B, Zahraoui A, Tavitian A, et al. Small GTP-binding protein associated with Golgi cisternae. Nature. 1990;345(6275):553–556. doi: 10.1038/345553a0
  • Heffernan LF, Simpson JC. The trials and tubule-ations of Rab6 involvement in Golgi-to-ER retrograde transport. Biochem Soc Trans. 2014;42(5):1453–1459. doi: 10.1042/bst20140178
  • Liu S, Storrie B. How Rab proteins determine Golgi structure. Int Rev Cell Mol Biol. 2015;315:1–22. doi: 10.1016/bs.ircmb.2014.12.002
  • Goud B, Liu S, Storrie B. Rab proteins as major determinants of the Golgi complex structure. Small GTPases. 2018;9(1–2):66–75. doi: 10.1080/21541248.2017.1384087
  • Valente C, Polishchuk R, De Matteis MA. Rab6 and myosin II at the cutting edge of membrane fission. Nat Cell Biol. 2010;12(7):635–638. doi: 10.1038/ncb0710-635
  • Fourriere L, Kasri A, Gareil N, et al. RAB6 and microtubules restrict protein secretion to focal adhesions. J Cell Bio. 2019;218(7):2215–2231. doi: 10.1083/jcb.201805002
  • Mallard F, Tang BL, Galli T, et al. Early/Recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J Cell Bio. 2002;156(4):653–664. doi: 10.1083/jcb.200110081
  • Girod A, Storrie B, Simpson JC, et al. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat Cell Biol. 1999;1(7):423–430. doi: 10.1038/15658
  • White J, Johannes L, Mallard F, et al. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Bio. 1999;147(4):743–760. doi: 10.1083/jcb.147.4.743
  • Del Nery E, Miserey-Lenkei S, Falguières T, et al. Rab6a and Rab6A′ GTPases play non-overlapping roles in membrane trafficking. Traffic. 2006;7(4):394–407. doi: 10.1111/j.1600-0854.2006.00395.x
  • Domínguez Cadena LC, Schultz TE, Zamoshnikova A, et al. Rab6b localizes to the Golgi complex in murine macrophages and promotes tumor necrosis factor release in response to mycobacterial infection. Immunol Cell Biol. 2021;99(10):1067–1076. doi: 10.1111/imcb.12503
  • Garcia-Saez I, Tcherniuk S, Kozielski F. The structure of human neuronal Rab6B in the active and inactive form. Acta Crystallogr D. 2006;62(7):725–733. doi: 10.1107/s0907444906015319
  • Young J, Ménétrey J, Goud B. RAB6C is a retrogene that encodes a centrosomal protein involved in cell cycle progression. J Mol Biol. 2010;397:69–88. doi: 10.1016/j.jmb.2010.01.009
  • Liu S, Hunt L, Storrie B, et al. Rab41 is a novel regulator of Golgi apparatus organization that is needed for ER-to-Golgi trafficking and cell growth. PLoS One. 2013;8(8):e71886. doi: 10.1371/journal.pone.0071886
  • Liu S, Majeed W, Kudlyk T, et al. Identification of Rab41/6d effectors provides an explanation for the differential effects of Rab41/6d and Rab6a/a’ on Golgi Organization. Front Cell Dev Biol. 2016;4:13. doi: 10.3389/fcell.2016.00013
  • Lippincott-Schwartz J, Yuan LC, Bonifacino JS, et al. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell. 1989;56(5):801–813. doi: 10.1016/0092-8674(89)90685-5
  • Martinez O, Antony C, Pehau-Arnaudet G, et al. GTP-bound forms of rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum. Proc Natl Acad Sci, USA. 1997;94(5):1828–1833. doi: 10.1073/pnas.94.5.1828
  • Mardones GA, Snyder CM, Howell KE. Cis-Golgi matrix proteins move directly to endoplasmic reticulum exit sites by association with tubules. Mol Biol Cell. 2006;17(1):525–538. doi: 10.1091/mbc.e05-05-0447
  • Sengupta P, Satpute-Krishnan P, Seo AY, et al. ER trapping reveals Golgi enzymes continually revisit the ER through a recycling pathway that controls Golgi organization. Proc Natl Acad Sci, USA. 2015;112(49):E6752–6761. doi: 10.1073/pnas.1520957112
  • Verissimo F, Halavatyi A, Pepperkok R, et al. A microtubule-independent role of p150glued in secretory cargo concentration at endoplasmic reticulum exit sites. J Cell Sci. 2015;128:4160–4170. doi: 10.1242/jcs.172395
  • Fossati M, Colombo SF, Borgese N. A positive signal prevents secretory membrane cargo from recycling between the Golgi and the ER. Embo J. 2014;33(18):2080–2097. doi: 10.15252/embj.201488367
  • Boncompain G, Perez F. The many routes of Golgi-dependent trafficking. Histochem Cell Biol. 2013;140(3):251–260. doi: 10.1007/s00418-013-1124-7
  • Berninsone PM, Hirschberg CB. Nucleotide sugar transporters of the Golgi apparatus. Curr Opin Struct Biol. 2000;10(5):542–547. doi: 10.1016/s0959-440x(00)00128-7
  • Hadley B, Litfin T, Day CJ, et al. Nucleotide sugar transporter SLC35 family structure and function. Computat Struct Biotechnol j. 2019;17:1123–1134. doi: 10.1016/j.csbj.2019.08.002
  • Maszczak-Seneczko D, Wiktor M, Skurska E, et al. Delivery of nucleotide sugars to the mammalian Golgi: A very well (un)explained story. Int J Mol Sci. 2022;23(15):8648. doi: 10.3390/ijms23158648
  • Gao J, Gao A, Zhou H, et al. The role of metal ions in the Golgi apparatus. Cell Biol Int. 2022;46(9):1309–1319. doi: 10.1002/cbin.11848
  • Hellerschmied D, Serebrenik YV, Shao L, et al. Protein folding state-dependent sorting at the Golgi apparatus. Mol Biol Cell. 2019;30(17):2296–2308. doi: 10.1091/mbc.E19-01-0069
  • Storrie B, White J, Röttger S, et al. Recycling of golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J Cell Bio. 1998;143(6):1505–1521. doi: 10.1083/jcb.143.6.1505
  • De Figueiredo P, Drecktrah D, Katzenellenbogen JA, et al. Evidence that phospholipase A2 activity is required for Golgi complex and trans Golgi network membrane tubulation. Proc Natl Acad Sci, USA. 1998;95(15):8642–8647. doi: 10.1073/pnas.95.15.8642
  • Gutiérrez-Martínez E, Fernández-Ulibarri I, Lázaro-Diéguez F, et al. Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway. J Cell Sci. 2013;126:2641–2655. doi: 10.1242/jcs.117705
  • Marra P, Maffucci T, Daniele T, et al. The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nat Cell Biol. 2001;3(12):1101–1113. doi: 10.1038/ncb1201-1101
  • Seemann J, Jokitalo E, Pypaert M, et al. Matrix proteins can generate the higher order architecture of the Golgi apparatus. Nature. 2000;407(6807):1022–1026. doi: 10.1038/35039538
  • Yadav S, Puthenveedu MA, Linstedt AD. Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev Cell. 2012;23(1):153–165. doi: 10.1016/j.devcel.2012.05.023
  • Lu Z, Joseph D, Bugnard E, et al. Golgi complex reorganization during muscle differentiation: visualization in living cells and mechanism. Mol Biol Cell. 2001;12(4):795–808. doi: 10.1091/mbc.12.4.795
  • Frisbie CP, Lushnikov AY, Krasnoslobodtsev AV, et al. Post-ER stress biogenesis of Golgi is governed by giantin. Cells. 2019;8(12):1631. doi: 10.3390/cells8121631
  • Simpson JC, Nilsson T, Pepperkok R. Biogenesis of tubular ER-to-Golgi transport intermediates. Mol Biol Cell. 2006;17(2):723–737. doi: 10.1091/mbc.e05-06-0580
  • Petrosyan A, Cheng PW. A non-enzymatic function of Golgi glycosyltransferases: mediation of Golgi fragmentation by interaction with non-muscle myosin IIA. Glycobiology. 2013;23(6):690–708. doi: 10.1093/glycob/cwt009
  • Miserey-Lenkei S, Chalancon G, Bardin S, et al. Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat Cell Biol. 2010;12(7):645–654. doi: 10.1038/ncb2067
  • Müsch A, Cohen D, Rodriguez-Boulan E. Myosin II is involved in the production of constitutive transport vesicles from the TGN. J Cell Bio. 1997;138(2):291–306. doi: 10.1083/jcb.138.2.291
  • Yamane J, Kubo A, Nakayama K, et al. Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic. Exp Cell Res. 2007;313(16):3472–3485. doi: 10.1016/j.yexcr.2007.07.010
  • Garcia JA, Ou SH, Wu F, et al. Cloning and chromosomal mapping of a human immunodeficiency virus 1 “TATA” element modulatory factor. Proc Natl Acad Sci USA. 1992;89(20):9372–9376. doi: 10.1073/pnas.89.20.9372
  • Fridmann-Sirkis Y, Siniossoglou S, Pelham HR. TMF is a golgin that binds Rab6 and influences Golgi morphology. BMC Cell Biol. 2004;5(1):18. doi: 10.1186/1471-2121-5-18
  • Petrosyan A, Casey CA, Cheng PW. The role of Rab6a and phosphorylation of non-muscle myosin IIA tailpiece in alcohol-induced Golgi disorganization. Sci Rep. 2016;6(1):31962. doi: 10.1038/srep31962
  • Spang A. Retrograde traffic from the Golgi to the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2013;5(6):a013391–a013391. doi: 10.1101/cshperspect.a013391
  • Bottanelli F, Kilian N, Ernst AM, et al. A novel physiological role for ARF1 in the formation of bidirectional tubules from the Golgi. Mol Biol Cell. 2017;28(12):1676–1687. doi: 10.1091/mbc.E16-12-0863
  • Beck R, Sun Z, Adolf F, et al. Membrane curvature induced by Arf1-GTP is essential for vesicle formation. Proc Natl Acad Sci, USA. 2008;105(33):11731–11736. doi: 10.1073/pnas.0805182105
  • Grigoriev I, Splinter D, Keijzer N, et al. Rab6 regulates transport and targeting of exocytotic carriers. Dev Cell. 2007;13(2):305–314. doi: 10.1016/j.devcel.2007.06.010
  • Echard A, Jollivet F, Martinez O, et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science. 1998;279(5350):580–585. doi: 10.1126/science.279.5350.580
  • Hill E, Clarke M, Barr FA. The Rab6-binding kinesin, Rab6-KIFL, is required for cytokinesis. Embo J. 2000;19(21):5711–5719. doi: 10.1093/emboj/19.21.5711
  • Fontijn RD, Goud B, Echard A, et al. The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis. Mol Cell Biol. 2001;21(8):2944–2955. doi: 10.1128/mcb.21.8.2944-2955.2001
  • Gruneberg U, Neef R, Honda R, et al. Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. J Cell Bio. 2004;166(2):167–172. doi: 10.1083/jcb.200403084
  • Miserey-Lenkei S, Bousquet H, Pylypenko O, et al. Coupling fission and exit of RAB6 vesicles at Golgi hotspots through kinesin-myosin interactions. Nat Commun. 2017;8(1):1254. doi: 10.1038/s41467-017-01266-0
  • Majeed W, Liu S, Storrie B. Distinct sets of Rab6 effectors contribute to ZW10–and COG-dependent Golgi homeostasis. Traffic. 2014;15(6):630–647. doi: 10.1111/tra.12167
  • Le Bot N, Antony C, White J, et al. Role of xklp3, a subunit of the Xenopus kinesin II heterotrimeric complex, in membrane transport between the endoplasmic reticulum and the Golgi apparatus. J Cell Bio. 1998;143(6):1559–1573. doi: 10.1083/jcb.143.6.1559
  • Young J, Stauber T, Del Nery E, et al. Regulation of microtubule-dependent recycling at the Trans -Golgi Network by Rab6A and Rab6A’. Mol Biol Cell. 2005;16(1):162–177. doi: 10.1091/mbc.e04-03-0260
  • Stauber T, Simpson JC, Pepperkok R, et al. A role for kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex. Curr Biol. 2006;16(22):2245–2251. doi: 10.1016/j.cub.2006.09.060
  • Matanis T, Akhmanova A, Wulf P, et al. Bicaudal-D regulates COPI-independent Golgi–ER transport by recruiting the dynein–dynactin motor complex. Nat Cell Biol. 2002;4(12):986–992. doi: 10.1038/ncb891
  • Matsuto M, Kano F, Murata M. Reconstitution of the targeting of Rab6A to the Golgi apparatus in semi-intact HeLa cells: A role of BICD2 in stabilizing Rab6A on Golgi membranes and a concerted role of Rab6A/BICD2 interactions in Golgi-to-ER retrograde transport. Biochim Biophys Acta. 2015;1853(10):2592–2609. doi: 10.1016/j.bbamcr.2015.05.005
  • Brault JB, Bardin S, Lampic M, et al. RAB6 and dynein drive post-Golgi apical transport to prevent neuronal progenitor delamination. EMBO Rep. 2022;23(10):e54605. doi: 10.15252/embr.202254605
  • Short B, Preisinger C, Schaletzky J, et al. The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr Biol. 2002;12(20):1792–1795. doi: 10.1016/s0960-9822(02)01221-6
  • Wanschers B, van de Vorstenbosch R, Wijers M, et al. Rab6 family proteins interact with the dynein light chain protein DYNLRB1. Cell Motil Cytoskeleton. 2008;65(3):183–196. doi: 10.1002/cm.20254
  • Cuif MH. Characterization of GAPCenA, a GTPase activating protein for Rab6, part of which associates with the centrosome. Embo J. 1999;18(7):1772–1782. doi: 10.1093/emboj/18.7.1772
  • Burguete AS, Fenn TD, Brunger AT, et al. Rab and Arl GTPase family members cooperate in the localization of the golgin GCC185. Cell. 2008;132(2):286–298. doi: 10.1016/j.cell.2007.11.048
  • Rosing M, Ossendorf E, Rak A, et al. Giantin interacts with both the small GTPase Rab6 and Rab1. Exp Cell Res. 2007;313(11):2318–2325. doi: 10.1016/j.yexcr.2007.03.031
  • Barr FA. A novel Rab6-interacting domain defines a family of Golgi-targeted coiled-coil proteins. Curr Biol. 1999;9(7):381–384. doi: 10.1016/s0960-9822(99)80167-5
  • Hennies HC, Kornak U, Zhang H, et al. Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab-6 interacting golgin. Nat Genet. 2008;40(12):1410–1412. doi: 10.1038/ng.252
  • Witkos TM, Chan WL, Joensuu M, et al. GORAB scaffolds COPI at the trans-Golgi for efficient enzyme recycling and correct protein glycosylation. Nat Commun. 2019;10(1):127. doi: 10.1038/s41467-018-08044-6
  • Lee PL, Ohlson MB, Pfeffer SR. Rab6 regulation of the kinesin family KIF1C motor domain contributes to Golgi tethering. Elife. 2015;4: doi: 10.7554/eLife.06029
  • Yamada M, Kumamoto K, Mikuni S, et al. Rab6a releases LIS1 from a dynein idling complex and activates dynein for retrograde movement. Nat Commun. 2013;4(1):2033. doi: 10.1038/ncomms3033
  • Teber I, Nagano F, Kremerskothen J, et al. Rab6 interacts with the mint3 adaptor protein. Biol Chem. 2005;386:671–677. doi: 10.1515/bc.2005.078
  • Thyrock A, Stehling M, Waschbüsch D, et al. Characterizing the interaction between the Rab6 GTPase and Mint3 via flow cytometry based FRET analysis. Biochem Biophys Res Commun. 2010;396(3):679–683. doi: 10.1016/j.bbrc.2010.04.161
  • Hyvola N, Diao A, McKenzie E, et al. Membrane targeting and activation of the Lowe syndrome protein OCRL1 by rab GTPases. Embo J. 2006;25(16):3750–3761. doi: 10.1038/sj.emboj.7601274
  • Miserey-Lenkei S, Waharte F, Boulet A, et al. Rab6-interacting protein 1 links Rab6 and Rab11 function. Traffic. 2007;8(10):1385–1403. doi: 10.1111/j.1600-0854.2007.00612.x
  • Recacha R, Boulet A, Jollivet F, et al. Structural basis for recruitment of Rab6-interacting protein 1 to Golgi via a RUN domain. Structure. 2009;17(1):21–30. doi: 10.1016/j.str.2008.10.014
  • Monier S, Jollivet F, Janoueix-Lerosey I, et al. Characterization of novel Rab6-interacting proteins involved in endosome-to-TGN transport. Traffic. 2002;3(4):289–297. doi: 10.1034/j.1600-0854.2002.030406.x
  • Jones SM, Crosby JR, Salamero J, et al. A cytosolic complex of p62 and rab6 associates with TGN38/41 and is involved in budding of exocytic vesicles from the trans-Golgi network. J Cell Bio. 1993;122(4):775–788. doi: 10.1083/jcb.122.4.775
  • Wassmer T, Attar N, Harterink M, et al. The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev Cell. 2009;17(1):110–122. doi: 10.1016/j.devcel.2009.04.016
  • Buser DP, Spang A. Protein sorting from endosomes to the TGN. Front Cell Dev Biol. 2023;11:1140605. doi: 10.3389/fcell.2023.1140605
  • Renard HF, Johannes L, Morsomme P. Increasing diversity of biological membrane fission mechanisms. Trends Cell Biol. 2018;28(4):274–286. doi: 10.1016/j.tcb.2017.12.001
  • Durán JM, Valderrama F, Castel S, et al. Myosin motors and not actin comets are mediators of the actin-based Golgi-to-endoplasmic reticulum protein transport. Mol Biol Cell. 2003;14(2):445–459. doi: 10.1091/mbc.e02-04-0214
  • Valderrama F, Durán JM, Babià T, et al. Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells. Traffic. 2001;2(10):717–726. doi: 10.1034/j.1600-0854.2001.21006.x
  • Tenorio MJ, Luchsinger C, Mardones GA, et al. Protein kinase a activity is necessary for fission and fusion of Golgi to endoplasmic reticulum retrograde tubules. PLoS One. 2015;10(8):e0135260. doi: 10.1371/journal.pone.0135260
  • Jia J, Tang S, Yue X, et al. An A-kinase anchoring protein (ACBD3) coordinates traffic-induced PKA activation at the Golgi. J Biol Chem. 2023;299(5):104696. doi: 10.1016/j.jbc.2023.104696
  • Petrosyan A, Ali MF, Verma SK, et al. Non-muscle myosin IIA transports a Golgi glycosyltransferase to the endoplasmic reticulum by binding to its cytoplasmic tail. Int J Biochem Cell Biol. 2012;44(7):1153–1165. doi: 10.1016/j.biocel.2012.04.004
  • Barnekow A, Thyrock A, Kessler D. Chapter 5 rab proteins and their interaction partners. In: Jeon KW, editor. Int. Rev. Cell Mol. BiolVol. 274. San Diego, USA: Elsevier; 2009. pp. 235–274. doi: 10.1016/S1937-6448(08)02005-4
  • Seelig HP, Schranz P, Schröter H, et al. Macrogolgin—A New 376 kD Golgi complex outer membrane protein as target of antibodies in patients with rheumatic disease and HIV Infections. J Autoimmun. 1994;7(1):67–91. doi: 10.1006/jaut.1994.1006
  • Boucrot E, Pick A, Çamdere G, et al. Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell. 2012;149(1):124–136. doi: 10.1016/j.cell.2012.01.047
  • Wang T, Li L, Hong W. SNARE proteins in membrane trafficking. Traffic. 2017;18(12):767–775. doi: 10.1111/tra.12524
  • Sun Y, Shestakova A, Hunt L, et al. Rab6 regulates both ZW10/RINT-1– and conserved oligomeric Golgi Complex-dependent Golgi trafficking and homeostasis. Mol Biol Cell. 2007;18(10):4129–4142. doi: 10.1091/mbc.e07-01-0080
  • Hirose H, Arasaki K, Dohmae N, et al. Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. Embo J. 2004;23(6):1267–1278. doi: 10.1038/sj.emboj.7600135
  • Arasaki K, Taniguchi M, Tani K, et al. RINT-1 regulates the localization and entry of ZW10 to the syntaxin 18 complex. Mol Biol Cell. 2006;17(6):2780–2788. doi: 10.1091/mbc.e05-10-0973
  • Shomron O, Hirschberg K, Burakov A, et al. Positioning of endoplasmic reticulum exit sites around the Golgi depends on BicaudalD2 and Rab6 activity. Traffic. 2021;22(3):64–77. doi: 10.1111/tra.12774
  • Heffernan LF, Suckrau PM, Banerjee T, et al. An imaging-based RNA interference screen for modulators of the Rab6-mediated Golgi-to-ER pathway in mammalian cells. Front Cell Dev Biol. 2022;10:1050190. doi: 10.3389/fcell.2022.1050190
  • Willett R, Ungar D, Lupashin V. The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol. 2013;140(3):271–283. doi: 10.1007/s00418-013-1117-6
  • McCaughey J, Stevenson NL, Cross S, et al. ER-to-Golgi trafficking of procollagen in the absence of large carriers. J Cell Bio. 2019;218(3):929–948. doi: 10.1083/jcb.201806035
  • McCaughey J, Stephens DJ. ER-to-Golgi Transport: A sizeable problem. Trends Cell Biol. 2019;29(12):940–953. doi: 10.1016/j.tcb.2019.08.007
  • Jackson ME, Simpson JC, Girod A, et al. The KDEL retrieval system is exploited by Pseudomonas exotoxin A, but not by Shiga-like toxin-1, during retrograde transport from the Golgi complex to the endoplasmic reticulum. J Cell Sci. 1999;112(4):467–475. doi: 10.1242/jcs.112.4.467
  • Sandvig K, Kavaliauskiene S, Skotland T. The protein toxins ricin and Shiga toxin as tools to explore cellular mechanisms of internalization and intracellular transport. Toxins (Basel). 2021;13(6):377. doi: 10.3390/toxins13060377
  • Luginbuehl V, Meier N, Kovar K, et al. Intracellular drug delivery: Potential usefulness of engineered Shiga toxin subunit B for targeted cancer therapy. Biotechnol Adv. 2018;36(3):613–623. doi: 10.1016/j.biotechadv.2018.02.005