1,240
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Exploring the insertion of ethylenediamine and bis(3-aminopropyl)amine into graphite oxide

, , &
Pages 28-39 | Received 15 Nov 2013, Accepted 06 Apr 2014, Published online: 09 May 2014

References

  • He H, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide. Chem Phys Lett. 1998;287:53–56. doi: 10.1016/S0009-2614(98)00144-4
  • Jeong H-K, Lee YP, Lahaye RJWE, Park M-H, An KH, Kim IJ, Yang C-W, Park CY, Ruoff RS, Lee YH. Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc. 2008;130:1362–1366. doi: 10.1021/ja076473o
  • Hu Z-L, Aizawa M, Wang Z-M, Yoshizawa N, Hatori H. Synthesis and characteristics of graphene oxide-derived carbon nanosheet-Pd nanosized particle composites. Langmuir. 2010;26(9):6681–6688. doi: 10.1021/la9040166
  • Matsuo Y, Higashika S, Kimura K, Miyamoto Y, Fukutsuka T, Sugie Y. Synthesis of polyaniline-intercalated layered materials via exchange reaction. J Mater Chem. 2002;12:1592–1596. doi: 10.1039/b107436a
  • Wang Z-M, Hoshinoo K, Shishibori K, Kanoh H, Ooi K. Surfactant-mediated synthesis of a novel nanoporous carbon-silica composite. Chem Mater. 2003;15:2926–2935. doi: 10.1021/cm020965c
  • Matsuo Y, Fukunaga T, Fukutsuka T, Sugie Y. Silylation of graphite oxide. Carbon. 2004;42:2113–2130. doi: 10.1016/j.carbon.2004.03.024
  • Pei S, Cheng H-M. The reduction of graphene oxide. Carbon. 2012;50:3210–3228. doi: 10.1016/j.carbon.2011.11.010
  • Guardia L, Villar-Rodil S, Paredes JI, Rozada R, Martínez-Alonso A, Tascón JMD. UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene–metal nanoparticle hybrids and dye degradation. Carbon. 2012;50:1014–1024. doi: 10.1016/j.carbon.2011.10.005
  • Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol. 2009;4:217–224. doi: 10.1038/nnano.2009.58
  • Stankovich S, Dikin D, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034
  • Georgakilas V, Bourlinos AB, Zboril R, Steriotis TA, Dallas P, Stubos AK, Trapalis C. Organic functionalisation of graphenes. Chem Commun. 2010;46:1766–1768. doi: 10.1039/b922081j
  • Stankovich S, Piner RD, Nguyen ST, Ruoff RS. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon. 2006;44:3342–3347. doi: 10.1016/j.carbon.2006.06.004
  • Xu C, Wu X, Zhu J, Wang X. Synthesis of amphiphilic graphite oxide. Carbon 2008;46(2):386–389. doi: 10.1016/j.carbon.2007.11.045
  • Brodie BC. On the atomic weight of graphite. Philos Trans R Soc Lond. 1859;149:249–259. doi: 10.1098/rstl.1859.0013
  • Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir. 2003;19:6050–6055. doi: 10.1021/la026525h
  • You S, Luzan SM, Szabo T, Talyzin AV. Effect of synthesis method on solvation and exfoliation of graphite oxide. Carbon. 2013;52:171–180. doi: 10.1016/j.carbon.2012.09.018
  • Barroso-Bujans F, Cerveny S, Verdejo R, del Val JJ, Alberdy JM, Alegría A, Colmenero J. Permanent adsorption of organic solvents in graphite oxide and its effect on the thermal exfoliation. Carbon. 2010;48:1079–1087. doi: 10.1016/j.carbon.2009.11.029
  • Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater. 2006;18:2740–2749. doi: 10.1021/cm060258+
  • Herrera-Alonso M, Abdala AA, McAllister MJ, Aksay IA, Prud'homme RK. Intercalation and stitching of graphite oxide with diaminoalkanes. Langmuir. 2007;23:10644–10649. doi: 10.1021/la0633839
  • Matsuo Y, Miyabe T, Fukutsuka T, Sugie Y. Preparation and characterization of alkylamine-intercalated graphite oxides. Carbon. 2007;45:1005–1012. doi: 10.1016/j.carbon.2006.12.023
  • Matsuo Y, Niwa T, Sugie Y. Preparation and characterization of cationic surfactant intercalated graphite oxide. Carbon. 1999;37:897–901. doi: 10.1016/S0008-6223(98)00226-7
  • Dékány I, Krüger-Grasser R, Weiss A. Selective liquid sorption properties of hydrophobized graphite oxide nanostructures. Colloid Polym Sci. 1998;276:570–576. doi: 10.1007/s003960050283
  • Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: past, present and future. Progress Mater Sci. 2011;56:1178–1271. doi: 10.1016/j.pmatsci.2011.03.003
  • Dongil AB, Bachiller-Baeza B, Guerrero-Ruiz A, Rodríguez-Ramos I, Martínez-Alonso A, Tascón JMD. Surface chemical modifications induced on high surface area graphite and carbon nanofibers using different oxidation and functionalization treatments. J Col Inter Sci. 2011;355:179–189. doi: 10.1016/j.jcis.2010.11.066
  • Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC. Solution properties of graphite and graphene J Am Chem Soc. 2006;128:7720–7721. doi: 10.1021/ja060680r
  • Wang S, Chia P-J, Chua L-L, Zhao L-H, Png R-Q, Sivaramakrishnan S, Zhou M, Goh RG-S, Friend RH, Wee AT-S, Ho PK-H. Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Adv Mater. 2008;20:3440–3446. doi: 10.1002/adma.200800279