Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 15, 2024 - Issue 1
1,836
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An assessment of the linkages between GM crop biotechnology and climate change mitigation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 150-169 | Received 02 Dec 2023, Accepted 22 Mar 2024, Published online: 08 Apr 2024

References

  • Khush GS. Genetically modified crops: the fastest adopted crop technology in the history of modern agriculture. Agric Food Secur. 2012;1(1):1–2. doi:10.1186/2048-7010-1-14.
  • Brookes GBP, Barfoot P. Environmental impacts of genetically modified (GM) crop use 1996–2018: impacts on pesticide use and carbon emissions. GM Crops & Food. 2020;11(4):215–41. doi:10.1080/21645698.2020.1773198.
  • International Service for the Acquisition of Agri-biotech Applications (ISAAA). Biotech crops drive socio-economic development and sustainable environment in the new frontier. ISAAA Brief 55. 2020. https://www.isaaa.org/resources/publications/briefs/55/executivesummary/default.asp.
  • Klümper W, Qaim M, Albertini E. A meta-analysis of the impacts of genetically modified crops. PLoS One. 2014;9(11):e111629. doi:10.1371/journal.pone.0111629.
  • Gleim S, Smyth SJ. Scientific underpinnings of biotechnology regulatory frameworks. N Biotechnol. 2018;42:26–32. doi:10.1016/j.nbt.2018.01.004.
  • Hansen CW, Wingender AM. National and global impacts of genetically modified crops. Am Econ Revi Insights. 2023;5(2):224–40. doi:10.1257/aeri.20220144.
  • Qaim M. Agricultural biotechnology in India: impacts and controversies. Chapter 9 In: Smyth SJ, Phillips PWB Castle D. editors. Handbook on agriculture, biotechnology and development. Cheltenham, UK:Edward Elgar Publishing Ltd; 2014:pp. 126–37.
  • Tilman D. Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci. 1999;96(11):5995–6000. doi:10.1073/pnas.96.11.5995.
  • Organisation for Economic Cooperation and Development. Making better policies for food systems. 2021. doi:10.1787/ddfba4de-en.
  • Barrows G, Sexton S, Zilberman D. The impact of agricultural biotechnology on supply and land-use. Environ Dev Econ. 2014;19(6):676–703. doi:10.1017/S1355770X14000400.
  • Mahaffey H, Taheripour F, Tyner WE. Evaluating the economic and environmental impacts of a global GMO ban. J Environ Prot. 2016;7(11):1522–1546.
  • Taheripour F, Mahaffey H, Tyner WE. Evaluation of economic, land use, and land use emission impacts of substituting non-GMO crops for GMO in the US (no. 330-2016-13790). 2015.
  • Zhang C, Wohlhueter R, Zhang H. Genetically modified foods: a critical review of their promise and problems. Food Sci Hum Wellness. 2016;5(3):116–23. doi:10.1016/j.fshw.2016.04.002.
  • Brookes G, Barfoot P. Economic impact of GM crops. GM Crops Food Biotechnol Agric Food Chain. 2014;5(1):65–75. doi:10.4161/gmcr.28098.
  • Brookes G. Farm income and production impacts from the use of genetically modified (GM) crop technology 1996-2020. GM Crops & Food. 2022;13(1):171–95. doi:10.1080/21645698.2022.2105626.
  • Phalan B, Onial M, Balmford A, Green RE. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science. 2011;333(6047):1289–91. doi:10.1126/science.1208742.
  • Sutherland C, Gleim S, Smyth SJ. Correlating genetically modified crops, glyphosate use and increased carbon sequestration. Sustainability. 2021;13(21):11679. doi:10.3390/su132111679.
  • Awada L, Nagy C, Phillips PW, Ali G. Contribution of land use practices to GHGs in the Canadian Prairies crop sector. PLoS One. 2021;16(12):e0260946. doi:10.1371/journal.pone.0260946.
  • Kern M, Noleppa S, Schwarz G. Impacts of chemical crop protection applications on related CO2 emissions and CO2 assimilation of crops. Pest Manag Sci. 2012;68(11):1458–66. doi:10.1002/ps.3328.
  • Canola Council of Canada (CCC). An agronomic and economic assessment of transgenic canola. 2001. http://www.canola-council.org/gmo_toc.aspx.
  • Brimner TA, Gallivan GJ, Stephenson GR. Influence of herbicide‐resistant canola on the environmental impact of weed management. Pest Manage Sci Formerly Pesti Sci. 2005;61(1):47–52. doi:10.1002/ps.967.
  • Kleter GA, Bhula R, Bodnaruk K, Carazo E, Felsot AS, Harris CA, Katayama A, Kuiper HA, Racke KD, Rubin B. et al. Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective. Pest Manag Sci. 2007;63(11):1107–15. doi:10.1002/ps.1448.
  • Brookes G, Barfoot P. Global impact of biotech crops: environmental effects, 1996–2008. AgBioForum. 2010;13:76–94.
  • Leeson JY, Thomas AG, Beckie HJ, Brenzil CA, Hall LM, Andrews T, Brown KR, Van Acker RC. Herbicide-use trends in prairie canola production systems. 2006 soils and crops workshop [CD-ROM], extension division, Saskatoon, SK, Canada: University of Saskatchewan; March 2–3, 2006. p. 7.
  • Smyth SJ, Gusta M, Belcher K, Phillips PW, Castle D. Changes in herbicide use after adoption of HR canola in Western Canada. Weed Technol. 2011;25(3):492–500. doi:10.1614/WT-D-10-00164.1.
  • Perry ED, Ciliberto F, Hennessy DA, Moschini G. Genetically engineered crops and pesticide use in US maize and soybeans. Sci Adv. 2016a;2(8):e1600850. doi:10.1126/sciadv.1600850.
  • Dong F, Mitchell PD, Davis VM, Recker R. Impact of atrazine prohibition on the sustainability of weed management in Wisconsin maize production. Pest Manag Sci. 2017;73(2):425–34. doi:10.1002/ps.4298.
  • Qaim M. Bt cotton in India: field trial results and economic projections. World Dev. 2003;31(12):2115–27. doi:10.1016/j.worlddev.2003.04.005.
  • Subramanian A, Qaim M. The impact of bt cotton on poor households in rural India. J Dev Stud. 2010;46(2):295–311. doi:10.1080/00220380903002954.
  • Kouser S, Qaim M. Impact of bt cotton on pesticide poisoning in smallholder agriculture: a panel data analysis. Ecol Econ. 2011;70(11):2105–13. doi:10.1016/j.ecolecon.2011.06.008.
  • Pray C, Huang J. The impact of bt cotton in China. In: Kalaitzandonakes N, editor. The economic and environmental impacts of agbiotech. Boston, MA: Springer; 2003. pp. 223–42.
  • Huang J, Mi J, Lin H, Wang Z, Chen R, Hu R, Rozelle S, Pray C. A decade of bt cotton in Chinese fields: assessing the direct effects and indirect externalities of Bt cotton adoption in China. Sci China Life Sci. 2010;53(8):981–91. doi:10.1007/s11427-010-4036-y.
  • Ahmed AU, Hoddinott J, Abedin N, Hossain N. The impacts of GM foods: results from a randomized controlled trial of Bt eggplant in Bangladesh. Am J Agric Econ. 2021;103(4):1186–206. doi:10.1111/ajae.12162.
  • Macall DM, Trabanino CR, Soto AH, Smyth SJ. Genetically modified maize impacts in Honduras: production and social issues. Transgenic Res. 2020;29(5):575–86. doi:10.1007/s11248-020-00221-y.
  • Brookes G, Taheripour F, Tyner WE. The contribution of glyphosate to agriculture and potential impact of restrictions on use at the global level. GM Crops & Food. 2017;8(4):216–28. doi:10.1080/21645698.2017.1390637.
  • Walsh MJ, Harrington RB, Powles SB. Harrington seed destructor: a new nonchemical weed control tool for global grain crops. Crop Sci. 2012;52(3):1343–47. doi:10.2135/cropsci2011.11.0608.
  • Statistic Canada. Table 32-10-0359-01, estimated areas, yield, production, average farm price and total farm value of principal field crops, in metric and imperial units. Ottawa, Canada: Queen’s Printer; 2022.
  • Smyth SJ, Awada L). Assessment of Saskatchewan agricultural greenhouse gas emissions: sources, sinks and measures. Report submitted to the Global Institute for Food Security. 2018
  • Grant B, Smith WN, Desjardins R, Lemke R, Li C. Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada. Clim Change. 2004;65(3):315–32. doi:10.1023/B:CLIM.0000038226.60317.35.
  • Shrestha BM, Desjardins RL, McConkey BG, Worth DE, Dyer JA, Cerkowniak DD. Change in carbon footprint of canola production in the Canadian prairies from 1986 to 2006. Renewable Energy. 2014;63:634–41. doi:10.1016/j.renene.2013.10.022.
  • MacWilliam S, Sanscartier D, Lemke R, Wismer M, Baron V. Environmental benefits of canola production in 2010 compared to 1990: a life cycle perspective. Agric Syst. 2016;145:106–15.
  • Biden S, Smyth SJ, Hudson D. The economic and environmental cost of delayed GM crop adoption: the case of Australia’s GM canola moratorium. GM Crops & Food. 2018;9(1):13–20. doi:10.1080/21645698.2018.1429876.
  • Kovak E, Blaustein-Rejto D, Qaim M. Genetically modified crops support climate change mitigation. Trends in Plant Science. 2022;27(7):627–629. doi:10.1016/j.tplants.2022.01.004.
  • Hudson D, Richards R. Evaluation of the agronomic, environmental, economic, and coexistence impacts following the introduction of GM canola to Australia (2008-2010). AgBioforum. 2014;17:1–12.
  • National Research Council. Environmental impacts of genetically engineered crops at the farm level. In: The impact of genetically engineered crops on farm sustainability in the United States. National Academies Press; 2010. p. 59–134.
  • Fernandez-Cornejo J. First decade of genetically engineered crops in the United States. Darby, PA: DIANE Publishing; 2009.
  • Givens WA, Shaw DR, Kruger GR, Johnson WG, Weller SC, Young BG, Wilson RG, Owen MDK, Jordan D. Survey of tillage trends following the adoption of glyphosate-resistant crops. Weed Technol. 2009;23(1):150–55. doi:10.1614/WT-08-038.1.
  • Harrington J, Byrne PF, Frank B, Nissen SJ, Westra P, Ellsworth PC, Henry WB. Perceived consequences of herbicide-tolerant and insect-resistant crops on integrated pest management strategies in the Western United States: results of an online survey. AgBioforum. 2009;12:412–21.
  • Fernandez-Cornejo J, Hallahan C, Nehring RF, Wechsler S, Grube A. Conservation tillage, herbicide use, and genetically engineered crops in the United States: the case of soybeans. AgBioforum. 2013;15:231–41.
  • Fernandez-Cornejo J, Klotz-Ingram C, Jans S. Farm-level effects of adopting herbicide-tolerant soybeans in the USA. J Agric Appl Econ. 2002;34(1):149–63. doi:10.1017/S1074070800002200.
  • Perry ED, Moschini G, Hennessy DA. Testing for complementarity: glyphosate tolerant soybeans and conservation tillage. Am J Agric Econ. 2016b;98(3):765–84. doi:10.1093/ajae/aaw001.
  • Molberg ES, McCurdy EV, Wenhardt A, Dew DA, Dryden RD. Minimum tillage requirements for summerfallow in western Canada. Can J Soil Sci. 1967;47(3):211–16. doi:10.4141/cjss67-033.
  • Carlyle WJ. The decline of summerfallow on the Canadian Prairies. Can Geographer. 1997;41(3):267–80. doi:10.1111/j.1541-0064.1997.tb01313.x.
  • Boehm M, Junkins B, Desjardins R, Kulshreshtha S, Lindwall W. Sink potential of Canadian agricultural soils. Clim Change. 2004;65(3):297–314. doi:10.1023/B:CLIM.0000038205.09327.51.
  • Mikha MM, Benjamin JG, Vigil MF, Nielson DC. Cropping intensity impacts on soil aggregation and carbon sequestration in the central great plains. Soil Sci Soc Am J. 2010;74(5):1712–19. doi:10.2136/sssaj2009.0335.
  • Ogle SM, Breidt FJ, Paustian K. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry. 2005;72(1):87–121. doi:10.1007/s10533-004-0360-2.
  • Sperow M. Estimating carbon sequestration potential on US agricultural topsoils. Soil Tillage Res. 2016;155:390–400. doi:10.1016/j.still.2015.09.006.
  • Rosenzweig ST, Schipanski ME. Landscape-scale cropping changes in the high plains: economic and environmental implications. Environ Res Lett. 2019;14(12):124088. doi:10.1088/1748-9326/ab5e8b.
  • Campbell CA, Zentner RP, Gameda S, Blomert B, Wall DD. Production of annual crops on the Canadian prairies: trends during 1976–1998. Can J Soil Sci. 2002;82(1):45–57. doi:10.4141/S01-046.
  • Hall SJ, Russell AE, Moore AR. Do corn-soybean rotations enhance decomposition of soil organic matter? Plant Soil. 2019;444(1):427–42. doi:10.1007/s11104-019-04292-7.
  • Gan YT, Campbell CA, Janzen HH, Lemke RL, Basnyat P, McDonald CL. Carbon input to soil from oilseed and pulse crops on the Canadian prairies. Agr Ecosyst Environ. 2009;132(3–4):290–97. doi:10.1016/j.agee.2009.04.014.
  • Bakker MM, Govers G, Jones RA, Rounsevell MD. The effect of soil erosion on Europe’s crop yields. Ecosystems. 2007;10(7):1209–19. doi:10.1007/s10021-007-9090-3.
  • Jarecki MK, Lal R. Crop management for soil carbon sequestration. CRC Crit Rev Plant Sci. 2003;22(6):471–502. doi:10.1080/713608318.
  • Sauer TJ, Hatfield JL, Prueger JH. Corn residue age and placement effects on evaporation and soil thermal regime. Soil Sci Soc Am J. 1996;60(5):1558–64. doi:10.2136/sssaj1996.03615995006000050039x.
  • Carpenter JE. Impact of GM crops on biodiversity. GM Crops. 2011;2(1):7–23. doi:10.4161/gmcr.2.1.15086.
  • McConkey B, Luce MS, Grant B, Smith W, Padbury G, Brandt K, Cerkowniak D. Saskatchewan soil conservation association prairie soil carbon balance project: monitoring SOC change across saskatchewan farms from 1996 to 2018. Change In SOC At Field Level Compon. February 2020. https://static1.squarespace.com/static/5fc882025388527f26b77665/t/5ff2b6fa0db4f45ccbebd302/1609742076069/2020-0223+PSCB+Report+2020+Final.pdf.
  • Olson KR, Al-Kaisi M, Lal R, Morton LW. Soil ecosystem services and intensified cropping systems. J Soil Water Conserv. 2017;72(3):64A–9A. doi:10.2489/jswc.72.3.64A.
  • Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304(5677):1623–27. doi:10.1126/science.1097396.
  • Powlson DS, Whitmore AP, Goulding KW. Soil carbon sequestration to mitigate climate change: a critical re‐examination to identify the true and the false. Eur J Soil Sci. 2011;62(1):42–55. doi:10.1111/j.1365-2389.2010.01342.x.
  • Campbell CA, Zentner RP, Selles F, Liang BC, Blomert B. Evaluation of a simple model to describe carbon accumulation in a brown chernozem under varying fallow frequency. Can J Soil Sci. 2001;81(4):383–94. doi:10.4141/S00-082.
  • West TO, Post WM. Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J. 2002;66(6):1930–46. doi:10.2136/sssaj2002.1930.
  • Nemo, Klumpp K, Coleman K, Dondini M, Goulding K, Hastings A, Jones M, Leifeld J, Osborne B, Saunders M, Scott T. Soil organic carbon (SOC) equilibrium and model initialisation methods: an application to the Rothamsted carbon (RothC) model. Environ Model Assess. 2017;22(3):215–29. doi:10.1007/s10666-016-9536-0.
  • Wutzler T, Reichstein M. Soils apart from equilibrium–consequences for soil carbon balance modelling. Biogeosciences. 2007;4(1):125–36. doi:10.5194/bg-4-125-2007.
  • Nath AJ, Rattan LAL. Effects of tillage practices and land use management on soil aggregates and soil organic carbon in the north Appalachian region, USA. Pedosphere. 2017;27(1):172–76. doi:10.1016/S1002-0160(17)60301-1.
  • Paustian K. Modelling soil organic matter dynamics - global challenges. In: Rees RM, Ball BC, Campbell CD Watson CA. editors Sustainable management of soil organic matter. Oxon, UK: CABI Press; 2000. p. 45–53.
  • McConkey BG, Liang BC, Campbell CA, Curtin D, Moulin A, Brandt SA, Lafond GP. Crop rotation and tillage impact on carbon sequestration in Canadian prairie soils. Soil Tillage Res. 2003;74(1):81–90. doi:10.1016/S0167-1987(03)00121-1.
  • Liebig MA, Morgan JA, Reeder JD, Ellert BH, Gollany HT, Schuman GE. Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada. Soil Tillage Res. 2005;83(1):25–52. doi:10.1016/j.still.2005.02.008.
  • Aziz I, Mahmood T, Islam KR. Effect of long term no-till and conventional tillage practices on soil quality. Soil Tillage Res. 2013;131:28–35. doi:10.1016/j.still.2013.03.002.
  • Angers DA, Eriksen-Hamel NS. Full‐inversion tillage and organic carbon distribution in soil profiles: a meta‐analysis. Soil Sci Soc Am J. 2008;72(5):1370–74. doi:10.2136/sssaj2007.0342.
  • Blanco-Canqui H, Lal R. No‐tillage and soil‐profile carbon sequestration: An on‐farm assessment. Soil Sci Soc Am J. 2008;72(3):693–701. doi:10.2136/sssaj2007.0233.
  • VandenBygaart AJ, Bremer E, McConkey BG, Ellert BH, Janzen HH, Angers DA, Carter MR, Drury CF, Lafond GP, McKenzie RH. Impact of sampling depth on differences in soil carbon stocks in long‐term agroecosystem experiments. Soil Sci Soc Am J. 2011;75(1):226–34. doi:10.2136/sssaj2010.0099.
  • Yanni S, Rajsic P, Wagner-Riddle C, Weersink A. 2018). A review of the efficacy and cost-effectiveness of on-farm BMPs for mitigating soil-related GHG emissions. Working Paper Series–WP 18-05. Institute for the Advanced Study of Food and Agricultural Policy. Department of Food, Agriculture, and Resource Economics. University of Guelph. http://ageconsearch.umn.edu/record/276270/files/SynthesisofGH.
  • Lee S, Clay DE, Clay SA. Impact of herbicide tolerant crops on soil health and sustainable agriculture crop production. In: Songstad D, Hatfield J, and Tomes D. editors. Convergence of food security, energy security and sustainable agriculture. Biotechnology in agriculture and forestry. Vol. 67. Berlin, Heidelberg:Springer; 2014. p. 211–236.
  • Fiodor A, Singh S, Pranaw K. The contrivance of plant growth promoting microbes to mitigate climate change impact in agriculture. Microorganisms. 2021;9(9):1841. doi:10.3390/microorganisms9091841.
  • Radcliffe J. 2019). Reducing crime: a companion for police leaders. http://reducingcrime.com.
  • Entine J, Felipe MSS, Groenewald J-H, Kershen DL, Lema M, McHughen A, Nepomuceno AL, Ohsawa R, Ordonio RL, Parrott WA. et al. Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world. Transgenic Res. 2021;3(4):551–84. doi:10.1007/s11248-021-00257-8.
  • Smyth SJ. Contributions of genome editing technologies towards improved nutrition, environmental sustainability and poverty reduction. Front Genome Ed. 2022;4:1–9. doi:10.3389/fgeed.2022.863193.
  • Smyth SJ, Lassoued R. Agriculture R&D implications of the CJEU’s gene-editing mutagenesis ruling. Trends Biotechnol. 2018;37(4):337–40. doi:10.1016/j.tibtech.2018.09.004.
  • Smyth SJ, McDonald J, Falck-Zepeda J. Investment, regulation, and uncertainty: managing new plant breeding techniques. GM Crops & Food. 2014;5(1):1–14. doi:10.4161/gmcr.27465.
  • Wesseler J. The EU’s farm-to-fork strategy: an assessment from the perspective of agricultural economics. Appl Econ Perspect Policy. 2022;44(4):1826–43. doi:10.1002/aepp.13239.
  • Food and Agriculture Organization. The 10 elements of agroecology: guiding the transition to sustainable food and agricultural systems. 2020. https://www.fao.org/3/i9037en/i9037en.pdf.