598
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biogenic engineered zinc oxide nanoparticle for sulfur black dye removal from contaminated wastewater: comparative optimization, simulation modeling, and isotherms

, , , &
Article: 2325721 | Received 09 Dec 2023, Accepted 27 Feb 2024, Published online: 11 Mar 2024

References

  • Ohale PE, Onu CE, Nwabanne JT, et al. A comparative optimization and modeling of ammonia–nitrogen adsorption from abattoir wastewater using a novel iron-functionalized crab shell. Appl Water Sci. 2022;12(8):193. doi: 10.1007/s13201-022-01713-4
  • Yadav S, Punia S, Sharma HR, et al. Nano-remediation for the decolourisation of textile effluents: a review. Nanofabrication. 2022;7:217–20. doi: 10.37819/nanofab.007.226
  • Kataria N, Chauhan AK, Garg VK, et al. Sequestration of heavy metals from contaminated water using magnetic carbon nanocomposites. J Hazard Mater Adv. 2022;6:100066. doi: 10.1016/j.hazadv.2022.100066
  • Baştürk E, Alver A. Modeling azo dye removal by sono-Fenton processes using response surface methodology and artificial neural network approaches. J Environ Manage. 2019;248:109300. doi: 10.1016/j.jenvman.2019.109300
  • Darwish AAA, Rashad M, Al-Aoh HA. Methyl orange adsorption comparison on nanoparticles: isotherm, kinetics, and thermodynamic studies. Dyes Pigm. 2019;160:563–71. doi: 10.1016/j.dyepig.2018.08.045
  • Chauhan, AK , Kataria N, Gupta, R, Garg VK, et al. Biogenic fabrication of ZnO@EC and MgO@EC using Eucalyptus leaf extract for the removal of hexavalent chromium Cr(VI) ions from water. Environmental Science and Pollution Research. 2023;30:124884–124901. doi: 10.1007/s11356-022-24967-6
  • Li W, Mu B, Yang Y. Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresour Technol. 2019;277:157–70. doi: 10.1016/j.biortech.2019.01.002
  • Huang Y, Zeng H, Xie L, et al. Super-assembled chiral mesostructured heteromembranes for smart and sensitive couple-accelerated enantioseparation. J Am Chem Soc. 2022;144(30):13794–13805. doi: 10.1021/jacs.2c04862
  • Kim D-Y, Sharma SK, Rasool K, et al. Development of novel peptide-modified silver nanoparticle-based rapid biosensors for detecting aminoglycoside antibiotics. J Agric Food Chem. 2023;71(34):12883–12898. doi: 10.1021/acs.jafc.3c03565
  • Zahmatkesh S, Hajiaghaei-Keshteli M, Bokhari A, Sundaramurthy S, Panneerselvam B, Rezakhani Y. Wastewater treatment with nanomaterials for the future: a state-of-the-art review. Environ Res. 2023;216:114652. doi: 10.1016/j.envres.2022.114652
  • Tran TV, Nguyen DTC, Kumar PS, et al. Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: a review. Environ Chem Lett. 2022;20(2):1309–1331. doi: 10.1007/s10311-021-01367-9
  • Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog. 2018;114:41–5. doi: 10.1016/j.micpath.2017.11.013
  • Hammad EN, Salem SS, Zohair MM, et al. Purpureocillium lilacinum mediated biosynthesis copper oxide nanoparticles with promising removal of dyes. Biointerface Res Appl Chem. 2022;12:1397–1404. doi: 10.33263/BRIAC122.13971404
  • Weisburg WG, Barns SM, Pelletier DA, et al. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697–703. doi: 10.1128/jb.173.2.697-703.1991
  • Kailasa SK, Borse S, Koduru JR, et al. Biomolecules as promising ligands in the synthesis of metal nanoclusters: sensing, bioimaging and catalytic applications. Trends Environ Anal Chem. 2021;32:e00140. doi: 10.1016/j.teac.2021.e00140
  • Zeng H, Zhou S, Xie L, Liang Q, Zhang X, Yan M, et al. Super-assembled mesoporous thin films with asymmetric nanofluidic channels for sensitive and reversible electrical sensing. Biosens Bioelectron. 2023;222:114985. doi: 10.1016/j.bios.2022.114985
  • Lim S, Kim JH, Park H, et al. Role of electrostatic interactions in the adsorption of dye molecules by Ti3C2-MXenes. RSC Adv. 2021;11(11):6201–6211. doi: 10.1039/D0RA10876F
  • Chollom MN, Rathilal S, Swalaha FM, et al. Comparison of response surface methods for the optimization of an upflow anaerobic sludge blanket for the treatment of slaughterhouse wastewater. Environ Eng Res. 2020;25(1):114–122. doi: 10.4491/eer.2018.366
  • Boateng ID, Yang X-M. Process optimization of intermediate-wave infrared drying: screening by plackett–Burman; comparison of Box–Behnken and central composite design and evaluation: a case study. Ind Crops Prod. 2021;162:113287. doi: 10.1016/j.indcrop.2021.113287
  • Ali A, Ing AWC, Abdullah WRW, et al. Preparation of high-performance adsorbent from low-cost agricultural waste (peanut husk) using full factorial design: application to dye removal. Biointerface Res Appl Chem. 2020;10:6619–6628. doi: 10.33263/BRIAC106.66196628
  • Ghosh A, Das P, Sinha K. Modeling of biosorption of Cu(II) by alkali-modified spent tea leaves using response surface methodology (RSM) and artificial neural network (ANN). Appl Water Sci. 2015;5(2):191–9. doi: 10.1007/s13201-014-0180-z
  • Weber TW, Chakravorti RK. Pore and solid diffusion models for fixed-bed adsorbers. AichE J. 1974;20(2):228–238. doi: 10.1002/aic.690200204
  • Ali K, De P, Bhowmik GC, et al. Adsorption behavior of methylene blue onto gellan gum-bentonite composite beads for bioremediation application. World J Pharm Sci. 2016:68–72.
  • Tempkin M, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalyst. J Acta Phys Chim USSR. 1940;12:327.
  • Bhattacharjee S. DLS and zeta potential – what they are and what they are not? J Control Release. 2016;235:337–51. doi: 10.1016/j.jconrel.2016.06.017
  • Ahmad A, Wei Y, Syed F, Tahir K, Rehman AU, Khan A, et al. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microb Pathog. 2017;102:133–42. doi: 10.1016/j.micpath.2016.11.030
  • Senthilkumar N, Nandhakumar E, Priya P, et al. Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities. New J Chem. 2017;41(18):10347–10356. doi: 10.1039/C7NJ02664A
  • Shanavas S, Duraimurugan J, Kumar GS, et al. Ecofriendly green synthesis of ZnO nanostructures using Artabotrys hexapetalu and Bambusa vulgaris plant extract and investigation on their photocatalytic and antibacterial activity. Mater Res Express. 2019;6(10):105098. doi: 10.1088/2053-1591/ab3efe
  • Ahmad W, Kalra D. Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. J King Saud Univ Sci. 2020;32(4):2358–2364. doi: 10.1016/j.jksus.2020.03.014
  • Venu Gopal VR, Kamila S. Effect of temperature on the morphology of ZnO nanoparticles: a comparative study. Appl Nanosci. 2017;7(3–4):75–82. doi: 10.1007/s13204-017-0553-3
  • Rajabairavi N, Raju CS, Karthikeyan C, et al. Biosynthesis of novel zinc oxide nanoparticles (ZnO NPs) using endophytic bacteria Sphingobacterium thalpophilum. Cham: Springer International Publishing; 2017. p. 245–254.
  • Siddique A, Nayak AK, Singh J. Synthesis of FeCl3-activated carbon derived from waste citrus limetta peels for removal of fluoride: an eco-friendly approach for the treatment of groundwater and bio-waste collectively. Groundwater Sust Develop. 2020;10:100339. doi: 10.1016/j.gsd.2020.100339
  • Vijayakumar S, Mahadevan S, Arulmozhi P, Sriram S, Praseetha PK. Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: characterization and antimicrobial analysis. Mater Sci Semicond Process. 2018;82:39–45. doi: 10.1016/j.mssp.2018.03.017
  • Vaseem M, Lee K-M, Shin J-K, et al. Synthesis of ZnO nanoparticles and their ink-jetting behavior. J Nanosci Nanotechnol. 2012;12(3):2380–2386. doi: 10.1166/jnn.2012.5693
  • Gan Y, Gu F, Han D, et al. Biomimetic synthesis of zinc oxide 3D architectures with gelatin as matrix. J Nanomater. 2010;2010:1–7. Article 7. doi: 10.1155/2010/289173
  • Meraat R, Issazadeh K, Abdolahzadeh Ziabari A, et al. Rapid detection of Escherichia coli by β-galactosidase biosensor based on ZnO NPs and MWCNTs: a comparative study. Curr Microbiol. 2020;77(10):2633–2641. doi: 10.1007/s00284-020-02040-0
  • Singh AV, Patil R, Anand A, et al. Biological synthesis of copper oxide nano particles using Escherichia coli. Curr Nanosci. 2010;6(4):365–369. doi: 10.2174/157341310791659062
  • Shantkriti S, Rani P. Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol App Sci. 2014;3:374–383.
  • Varadavenkatesan T, Lyubchik E, Pai S, Pugazhendhi A, Vinayagam R, Selvaraj R. Photocatalytic degradation of rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. J Photochem Photobiol B Biol. 2019;199:111621. doi: 10.1016/j.jphotobiol.2019.111621
  • Pai S, Kini SM, Narasimhan MK, Pugazhendhi A, Selvaraj R. Structural characterization and adsorptive ability of green synthesized Fe3O4 nanoparticles to remove acid blue 113 dye. Surf Interfaces. 2021;23:100947. doi: 10.1016/j.surfin.2021.100947
  • Lingamdinne LP, Vemula KR, Chang Y-Y, et al. Process optimization and modeling of lead removal using iron oxide nanocomposites generated from bio-waste mass. Chemosphere. 2020;243:125257. doi: 10.1016/j.chemosphere.2019.125257
  • Haddar W, Baaka N, Meksi N, Elksibi I, Farouk Mhenni M. Optimization of an ecofriendly dyeing process using the wastewater of the olive oil industry as natural dyes for acrylic fibres. J Clean Prod. 2014;66:546–54. doi: 10.1016/j.jclepro.2013.11.017
  • Bingol D, Tekin N, Alkan M. Brilliant yellow dye adsorption onto sepiolite using a full factorial design. Appl Clay Sci. 2010;50(3):315–321. doi: 10.1016/j.clay.2010.08.015
  • Geyikci F, Büyükgüngör H. Factorial experimental design for adsorption silver ions from water onto montmorillonite. Acta Geodyn Geomater. 2013;10:363–370. doi: 10.13168/AGG.2013.0035
  • Al-Arjan WS. Zinc oxide nanoparticles and their application in adsorption of toxic dye from aqueous solution. MDPI Polymer. 2022;14(15):3086. doi: 10.3390/polym14153086
  • Praipipat P, Ngamsurach P, Prasongdee V. Comparative reactive blue 4 dye removal by lemon peel bead doping with iron(III) oxide-hydroxide and zinc oxide. ACS Omega. 2022;7(45):41744–41758. doi: 10.1021/acsomega.2c05956
  • Chauhan AK, Kataria N, Garg VK. Green fabrication of ZnO nanoparticles using Eucalyptus spp. leaves extract and their application in wastewater remediation. Chemosphere. 2020;247:125803. doi: 10.1016/j.chemosphere.2019.125803
  • Elfeky AS, Youssef HF, Elzaref AS. Adsorption of dye from wastewater onto ZnO nanoparticles-loaded zeolite: kinetic, thermodynamic and isotherm studies. Zeitschrift für Physikalische Chemie. 2020;234(2):255–278. doi: 10.1515/zpch-2018-1342
  • Rawat S, Samreen K, Nayak AK, et al. Fabrication of iron nanoparticles using parthenium: a combinatorial eco-innovative approach to eradicate crystal violet dye and phosphate from the aqueous environment. Environ Nanotechnol Monit Manage. 2021;15:100426. doi: 10.1016/j.enmm.2021.100426
  • Prasannamedha G, Kumar PS, Mehala R, Sharumitha TJ, Surendhar D. Enhanced adsorptive removal of sulfamethoxazole from water using biochar derived from hydrothermal carbonization of sugarcane bagasse. J Hazard Mater. 2021;407:124825. doi: 10.1016/j.jhazmat.2020.124825
  • Li X, Xie L, Yang X, et al. Adsorption behavior and mechanism of β-cyclodextrin–styrene-based polymer for cationic dyes. RSC Adv. 2018;8(70):40321–40329. doi: 10.1039/C8RA07709F
  • Pinheiro D, Sunaja Devi KR, Jose A, et al. Effect of surface charge and other critical parameters on the adsorption of dyes on SLS coated ZnO nanoparticles and optimization using response surface methodology. J Environ Chem Eng. 2020;8(4):103987. doi: 10.1016/j.jece.2020.103987