58
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

1,25(OH)2D3 supplementation alleviates gut–vascular barrier disruption via inhibition of S100B/ADAM10 pathway

, , &
Article: 2327776 | Received 11 Nov 2023, Accepted 04 Mar 2024, Published online: 17 Mar 2024

References

  • Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E, Di Sabatino A, Caprioli F, Bottiglieri L, Oldani A, Viale G. et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science. 2015;350(6262):830–13. doi:10.1126/science.aad0135.
  • Jingjie W, Jun S. Gut vascular barrier in the pathogenesis and resolution of Crohn’s disease: a novel link from origination to therapy. Clin Immunol. 2023;253:109683. doi:10.1016/j.clim.2023.109683.
  • Li Y, Zhou J, Qiu J, Huang Z, Wang W, Wu P, Feng A. Berberine reduces gut-vascular barrier permeability via modulation of ApoM/S1P pathway in a model of polymicrobial sepsis. Life Sci. 2020;261:118460. doi:10.1016/j.lfs.2020.118460.
  • Mouries J, Brescia P, Silvestri A, Spadoni I, Sorribas M, Wiest R, Mileti E, Galbiati M, Invernizzi P, Adorini L. et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol. 2019;71(6):1216–28. doi:10.1016/j.jhep.2019.08.005.
  • Bertocchi A, Carloni S, Ravenda PS, Bertalot G, Spadoni I, Lo Cascio A, Gandini S, Lizier M, Braga D, Asnicar F. et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell. 2021;39(5):708–24 e11. doi:10.1016/j.ccell.2021.03.004.
  • Pellegrini C, Fornai M, D’Antongiovanni V, Antonioli L, Bernardini N, Derkinderen P. The intestinal barrier in disorders of the central nervous system. Lancet Gastroenterol Hepatol. 2023;8(1):66–80. doi:10.1016/S2468-1253(22)00241-2.
  • Chu T, Yu R, Gu Y, Wang Y, Chang H, Li Y, Li J, Bian Y. Kaempferol protects gut-vascular barrier from high glucose-induced disorder via NF-κB pathway. J Nutr Biochem. 2024;123:109496. doi:10.1016/j.jnutbio.2023.109496.
  • Zhang YN, Chang ZN, Liu ZM, Wen SH, Zhan YQ, Lai HJ, Zhang H-F, Guo Y, Zhang X-Y. Dexmedetomidine alleviates gut-vascular barrier damage and distant hepatic injury following intestinal Ischemia/Reperfusion injury in mice. Anesth Analg. 2022;134(2):419–431. doi:10.1213/ANE.0000000000005810.
  • Ciccia F, Guggino G, Rizzo A, Alessandro R, Luchetti MM, Milling S, Saieva L, Cypers H, Stampone T, Di Benedetto P. et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann Rheum Dis. 2017;76(6):1123–32. doi:10.1136/annrheumdis-2016-210000.
  • Spadoni I, Pietrelli A, Pesole G, Rescigno M. Gene expression profile of endothelial cells during perturbation of the gut vascular barrier. Gut Microbes. 2016;7(6):540–8. doi:10.1080/19490976.2016.1239681.
  • Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol. 2021;18(8):571–87. doi:10.1038/s41575-021-00423-7.
  • Mao X, Shen J. Potential roles of enteric glial cells in Crohn’s disease: a critical review. Cell Prolif. 2024;57(1):e13536. doi:10.1111/cpr.13536.
  • Matteoli G. Enteric glial cells: new players in mucosal defence against bacteria? Gut. 2011;60(4):429–30. doi:10.1136/gut.2010.231019.
  • Xiao W, Wang W, Chen W, Sun L, Li X, Zhang C, Yang H. GDNF is involved in the barrier-inducing effect of enteric glial cells on intestinal epithelial cells under acute ischemia reperfusion stimulation. Mol Neurobiol. 2014;50(2):274–289. doi:10.1007/s12035-014-8730-9.
  • Antonioli L, D’Antongiovanni V, Pellegrini C, Fornai M, Benvenuti L, di Carlo A, van den Wijngaard R, Caputi V, Cerantola S, Giron MC. et al. Colonic dysmotility associated with high-fat diet-induced obesity: role of enteric glia. FASEB J. 2020;34(4):5512–24. doi:10.1096/fj.201901844R.
  • Anderson RE, Hansson LO, Nilsson O, Dijlai-Merzoug R, Settergren G. High serum S100B levels for trauma patients without head injuries. Neurosurgery. 2001;48(6):1255–1258. discussion 8-60. doi: 10.1227/00006123-200106000-00012.
  • Cirillo C, Sarnelli G, Esposito G, Turco F, Steardo L, Cuomo R. S100B protein in the gut: the evidence for enteroglial-sustained intestinal inflammation. World J Gastroenterol. 2011;17(10):1261–1266. doi:10.3748/wjg.v17.i10.1261.
  • Roberts DJ, Hall RI, Wang Y, Julien LC, Wood J, Goralski KB. La S100B comme biomarqueur d’une perturbation de la barrière hémato-encéphalique après une réparation d’anévrisme aortique thoraco-abdominale: analyse secondaire d’une étude de cohorte prospective. Can J Anaesth. 2021;68(12):1756–1768. doi:10.1007/s12630-021-02110-2.
  • Brown IA, JL M, Watson RE, Patel BA, Gulbransen BD. Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell Mol Gastroenterol Hepatol. 2016;2(1):77–91. doi:10.1016/j.jcmgh.2015.08.007.
  • Capoccia E, Cirillo C, Gigli S, Pesce M, D’Alessandro A, Cuomo R, Sarnelli G, Steardo L, Esposito G. Enteric glia: a new player in inflammatory bowel diseases. Int J Immunopathol Pharmacol. 2015;28(4):443–451. doi:10.1177/0394632015599707.
  • Feng A, Su S, Li C, Kang Y, Qiu J, Zhou J. Berberine decreases S100B generation to regulate gut vascular barrier permeability in mice with burn injury. Pharm Biol. 2024;62(1):53–61. doi:10.1080/13880209.2023.2291679.
  • Hall NJ, Smith VV, Harding B, Pierro A, Eaton S. Intestinal ischemia-reperfusion injury does not lead to acute central nervous system damage. J Surg Res. 2005;129(2):288–291. doi:10.1016/j.jss.2005.04.036.
  • Costa DVS, Moura-Neto V, Bolick DT, Guerrant RL, Fawad JA, Shin JH, Medeiros PHQS, Ledwaba SE, Kolling GL, Martins CS. et al. S100B inhibition attenuates intestinal damage and diarrhea severity during clostridioides difficile infection by modulating inflammatory response. Front Cell Infect Microbiol. 2021;11:739874. doi:10.3389/fcimb.2021.739874.
  • Seguella L, Capuano R, Pesce M, Annunziata G, de Conno B, Sarnelli G, Sarnelli G, Aurino L, Esposito G. S100B protein stimulates proliferation and angiogenic mediators release through RAGE/pAkt/mTOR pathway in human colon adenocarcinoma caco-2 cells. Int J Mol Sci. 2019;20(13):20. doi:10.3390/ijms20133240.
  • McCulloch DR, Harvey M, Herington AC. The expression of the ADAMs proteases in prostate cancer cell lines and their regulation by dihydrotestosterone. Mol Cell Endocrinol. 2000;167(1–2):11–21. doi:10.1016/S0303-7207(00)00305-1.
  • Reiss K, Bhakdi S. The plasma membrane: penultimate regulator of ADAM sheddase function. Biochim Biophys Acta Mol Cell Res. 2017;1864(11):2082–2087. doi:10.1016/j.bbamcr.2017.06.006.
  • Wu YH, Wei CY, Hong WC, Pang JS. Berberine suppresses leukocyte adherence by downregulating CX3CL1 expression and shedding and ADAM10 in lipopolysaccharide-stimulated vascular endothelial cells. Int J Mol Sci. 2022;23(9):23. doi:10.3390/ijms23094801.
  • Alfano DN, Miller MJ, Bubeck Wardenburg J. Endothelial ADAM10 utilization defines a molecular pathway of vascular injury in mice with bacterial sepsis. J Clin Invest. 2023;133(23). doi:10.1172/JCI168450.
  • Schulz B, Pruessmeyer J, Maretzky T, Ludwig A, Blobel CP, Saftig P, Reiss K. ADAM10 regulates endothelial permeability and T-Cell transmigration by proteolysis of vascular endothelial cadherin. Circ Res. 2008;102(10):1192–1201. doi:10.1161/CIRCRESAHA.107.169805.
  • Yuan Q, Yu H, Chen J, Song X, Sun L. ADAM10 promotes cell growth, migration, and invasion in osteosarcoma via regulating E-cadherin/β-catenin signaling pathway and is regulated by miR-122-5p. Cancer Cell Int. 2020;20(1):99. doi:10.1186/s12935-020-01174-2.
  • Appel D, Hummel R, Weidemeier M, Endres K, Golz C, Schafer MKE. Pharmacologic inhibition of ADAM10 attenuates brain tissue loss, axonal injury and pro-inflammatory gene expression following traumatic brain Injury in mice. Front Cell Dev Biol. 2021;9:661462. doi:10.3389/fcell.2021.661462.
  • Jones JC, Rustagi S, Dempsey PJ. ADAM proteases and gastrointestinal function. Annu Rev Physiol. 2016;78(1):243–76. doi:10.1146/annurev-physiol-021014-071720.
  • Zheng Y, Verhoeff TA, Perez Pardo P, Garssen J, Kraneveld AD. The gut-brain axis in autism spectrum disorder: a focus on the metalloproteases ADAM10 and ADAM17. Int J Mol Sci. 2020;22(1):22. doi:10.3390/ijms22010118.
  • Seike S, Takehara M, Takagishi T, Miyamoto K, Kobayashi K, Nagahama M. Delta-toxin from Clostridium perfringens perturbs intestinal epithelial barrier function in caco-2 cell monolayers. Biochim Biophys Acta Biomembr. 2018;1860(2):428–433. doi:10.1016/j.bbamem.2017.10.003.
  • Dempsey PJ. Role of ADAM10 in intestinal crypt homeostasis and tumorigenesis. Biochim Biophys Acta Mol Cell Res. 2017;1864(11):2228–2239. doi:10.1016/j.bbamcr.2017.07.011.
  • El-Sharkawy A, Malki A. Vitamin D signaling in inflammation and cancer: molecular mechanisms and therapeutic implications. Molecules. 2020;25(14):25. doi:10.3390/molecules25143219.
  • Larsson S, Voss U. Neuroprotective effects of vitamin D on high fat diet- and palmitic acid-induced enteric neuronal loss in mice. BMC Gastroenterol. 2018;18(1):175. doi:10.1186/s12876-018-0905-9.
  • Grimm MO, Mett J, Hartmann T. The impact of vitamin E and other fat-soluble vitamins on Alzheimer´s disease. Int J Mol Sci. 2016;17(11):1785. doi:10.3390/ijms17111785.
  • Battistini C, Ballan R, Herkenhoff ME, Saad SMI, Sun J. Vitamin D modulates intestinal microbiota in inflammatory bowel diseases. Int J Mol Sci. 2020;22(1):362.
  • Yang WS, Kim HW, Lee JM, Han NJ, Lee MJ, Park SK. 1,25-dihydroxyvitamin D3 causes ADAM10-dependent ectodomain shedding of tumor necrosis factor receptor 1 in vascular smooth muscle cells. Mol Pharmacol. 2015;87(3):533–42. doi:10.1124/mol.114.097147.
  • Yang WS, Kim JJ, Han NJ, Lee EK, Park SK. 1,25-dihydroxyvitamin D3 attenuates the effects of lipopolysaccharide by causing ADAM10-dependent ectodomain shedding of toll-like receptor 4. Cell Physiol Biochem. 2017;41(5):2104–16. doi:10.1159/000475449.
  • Luo Y, Qu C, Zhang R, Zhang J, Han D, Na L. Geographic location and ethnicity comprehensively influenced vitamin D status in college students: a cross-section study from China. J Health Popul Nutr. 2023;42(1):145. doi:10.1186/s41043-023-00488-x.
  • Xie Y, Bai C, Feng Q, Gu D. Serum vitamin D(3) concentration, sleep, and cognitive impairment among older adults in China. Nutrients. 2023;15(19):15. doi:10.3390/nu15194192.
  • Krajewski A, Piorun K, Maciejewska-Markiewicz D, Markowska M, Skonieczna-Zydecka K, Stachowska E, Polakowska Z, Mazurek M, Szczuko M. 25-hydroxycholecalciferol concentration is associated with protein loss and serum albumin level during the acute phase of burn injury. Nutrients. 2020;12(9):12. doi:10.3390/nu12092780.
  • Chen SF, Ruan YJ. 1a, 25-dihydroxyvitamin D 3 decreases scalding-and platelet-activating factor-induced high vascular permeability and tissue oedema. Pharmacol Toxicol. 1995;76(6):365–367. doi:10.1111/j.1600-0773.1995.tb00162.x.
  • Rocha M, Vieira A, Michels M, Borges H, Goulart A, Fernandes F, Dominguini D, Ritter C, Dal-Pizzol F. Effects of S100B neutralization on the long-term cognitive impairment and neuroinflammatory response in an animal model of sepsis. Neurochem Int. 2021;142:104906. doi:10.1016/j.neuint.2020.104906.
  • Zaki AN. Biosafety and biosecurity measures: management of biosafety level 3 facilities. Int J Antimicrob Agents. 2010;36(Suppl 1):S70–4. doi:10.1016/j.ijantimicag.2010.06.026.
  • Zhang M, Yang P, Yu T, Harmsen MC, Gao M, Liu D, Shi Y, Liu Y, Zhang X. Lytic cocktail: an effective method to alleviate severe burn induced hyper-metabolism through regulating white adipose tissue browning. Heliyon. 2022;8(3):e09128. doi:10.1016/j.heliyon.2022.e09128.
  • Mitrasinovic-Brulic M, Dervisevic A, Zaciragic A, Focak M, Valjevac A, Hadzovic-Dzuvo A, Suljević D. Vitamin D3 attenuates oxidative stress and regulates glucose level and leukocyte count in a semi-chronic streptozotocin-induced diabetes model. J Diabetes Metab Disord. 2021;20(1):771–779. doi:10.1007/s40200-021-00814-2.
  • Feng AW, Gao W, Zhou GR, Yu R, Li N, Huang XL, Li Q-R, Li J-S. Berberine ameliorates COX-2 expression in rat small intestinal mucosa partially through PPARγ pathway during acute endotoxemia. Int Immunopharmacol. 2012;12:182–188. doi:10.1016/j.intimp.2011.11.009.
  • Kuittinen T, Rovio P, Luukkaala T, Laurila M, Grenman S, Kallioniemi A, MÄENPÄÄ J. Paclitaxel, Carboplatin and 1,25-D3 inhibit proliferation of ovarian cancer cells in vitro. Anticancer Res. 2020;40(6):3129–3138. doi:10.21873/anticanres.14294.
  • Shackleton B, Crawford F, Bachmeier C. Inhibition of ADAM10 promotes the clearance of Aβ across the BBB by reducing LRP1 ectodomain shedding. Fluids Barriers CNS. 2016;13(1):14. doi:10.1186/s12987-016-0038-x.
  • Liu XZ, You B, Zhang YL, Yang ZC, Chen P, Shi YL, Chen Y, Chen YJ, Chen J, Peng YZ. et al. Effects of vitamin D(3) on intestinal mucosal barrier of mice with severe burns. Zhonghua Shao Shang Za Zhi. 2019;35(4):284–291. doi:10.3760/cma.j.issn.1009-2587.2019.04.008.
  • Zou Z, Li L, Li Q, Zhao P, Zhang K, Liu C, Cai D, Maegele M, Gu Z, Huang Q. et al. The role of S100B/RAGE-enhanced ADAM17 activation in endothelial glycocalyx shedding after traumatic brain injury. J Neuroinflammation. 2022;19(1):46. doi:10.1186/s12974-022-02412-2.
  • Feng Y, Huang Y, Wang Y, Wang P, Wang F. Severe burn injury alters intestinal microbiota composition and impairs intestinal barrier in mice. Burns & Trauma. 2019;7:20. doi:10.1186/s41038-019-0156-1.
  • Fan J, Meng Q, Guo G, Xie Y, Li X, Xiu Y, Li T, Ma L. Effects of early enteral nutrition supplemented with arginine on intestinal mucosal immunity in severely burned mice. Clin Nutr. 2010;29(1):124–130. doi:10.1016/j.clnu.2009.07.005.
  • Wen H, Xing L, Sun K, Xiao C, Meng X, Yang J. Loganin attenuates intestinal injury in severely burned rats by regulating the toll‑like receptor 4/NF‑κB signaling pathway. Exp Ther Med. 2020;20(1):591–598. doi:10.3892/etm.2020.8725.
  • Costantini TW, Bansal V, Krzyzaniak M, Putnam JG, Peterson CY, Loomis WH, Wolf P, Baird A, Eliceiri BP, Coimbra R. et al. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am J Physiol Gastrointest Liver Physiol. 2010;299(6):G1308–18. doi:10.1152/ajpgi.00156.2010.
  • Al-Tarrah K, Hewison M, Moiemen N, Lord JM. Vitamin D status and its influence on outcomes following major burn injury and critical illness. Burns & Trauma. 2018;6:11. doi:10.1186/s41038-018-0113-4.
  • Klein GL, Chen TC, Holick MF, Langman CB, Price H, Celis MM, Herndon DN. Synthesis of vitamin D in skin after burns. Lancet. 2004;363(9405):291–292. doi:10.1016/S0140-6736(03)15388-3.
  • Kempker JA, Tangpricha V, Ziegler TR, Martin GS. Vitamin D in sepsis: from basic science to clinical impact. Crit Care. 2012;16(4):316. doi:10.1186/cc11252.
  • Klein GL, Herndon DN, Chen TC, Kulp G, Holick MF. Standard multivitamin supplementation does not improve vitamin D insufficiency after burns. J Bone Miner Metab. 2009;27(4):502–6. doi:10.1007/s00774-009-0065-7.
  • Zavala S, Larson J, O’Mahony M, Rech MA. Impact of insufficient admission vitamin D serum concentrations on sepsis incidence and clinical outcomes in patients with thermal injury. Burns. 2020;46(1):172–7. doi:10.1016/j.burns.2019.02.025.
  • Lee PC, Hsieh YC, Huo TI, Yang UC, Lin CH, Li CP, Huang Y-H, Hou M-C, Lin H-C, Lee K-C. et al. Active vitamin D 3 treatment attenuated bacterial translocation via improving intestinal barriers in cirrhotic rats. Mol Nutr Food Res. 2021;65(3):e2000937. doi:10.1002/mnfr.202000937.
  • Yang J, Wang K, Hu T, Wang G, Wang W, Zhang J. Vitamin D3 supplement attenuates blood–brain barrier disruption and cognitive impairments in a rat model of traumatic brain injury. Neuromolecular Med. 2021;23(4):491–499. doi:10.1007/s12017-021-08649-z.
  • Wei C, Luo Y, Peng L, Huang Z, Pan Y. Expression of notch and Wnt/β-catenin signaling pathway in acute phase severe brain injury rats and the effect of exogenous thyroxine on those pathways. Eur J Trauma Emerg Surg. 2021;47(6):2001–2015. doi:10.1007/s00068-020-01359-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.