68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fibroblasts/three-dimensional scaffolds complexes promote wound healing in rats with skin defects

, , , , , , & show all
Article: 2334544 | Received 19 Oct 2023, Accepted 20 Mar 2024, Published online: 27 Mar 2024

References

  • Parke MA, Perez-Sanchez A, Zamil DH, Katta R. Diet and skin barrier: the role of dietary interventions on skin barrier function. Dermatol Pract Concept. 2021;11:e2021132. doi: 10.5826/dpc.1101a132.
  • Kavanagh F, Singhal S, Rozen WM. Split thickness skin graft compression: a scoping review. Gland Surg. 2023;12(2):297–12. doi: 10.21037/gs-22-468.
  • Zhang M, Zhang C, Li Z, Fu X, Huang S. Advances in 3D skin bioprinting for wound healing and disease modeling. Regen Biomater. 2023;10:rbac105. doi: 10.1093/rb/rbac105.
  • Wang Z, Liang X, Wang G, Wang X, Chen Y. Emerg Bioprinting For Wound Healing. 2023:e2304738. doi:10.1002/adma.202304738.
  • Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N. Innovative treatment strategies to accelerate wound healing: trajectory and recent advancements. Cells. 2022;11(15): doi: 10.3390/cells11152439.
  • Wang X, Wang Y, Teng Y, Shi J, Yang X, Ding Z, Guo X, Hou S, Lv Q. 3D bioprinting: opportunities for wound dressing development. Biomed Mater. 2023;18(5): doi: 10.1088/1748-605X/ace228.
  • Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioact Mater. 2022;10:15–31. doi: 10.1016/j.bioactmat.2021.09.014.
  • Park W, Gao G, Cho D-W. Tissue-specific decellularized extracellular matrix bioinks for musculoskeletal tissue regeneration and modeling using 3D bioprinting technology. IJMS. 2021;22(15): doi: 10.3390/ijms22157837.
  • Abbasov IB. Three-dimensional bioprinting of organs: modern trends. Crit Rev Biomed Eng. 2022;50(3):19–34. doi: 10.1615/CritRevBiomedEng.2022043734.
  • Tan SH, Ngo ZH, Sci DB, Leavesley D, Liang K. Recent advances in the design of three-dimensional and bioprinted scaffolds for full-thickness wound healing, tissue engineering. Tissue Eng Part B Rev. 2022;28(1):160–181. doi: 10.1089/ten.TEB.2020.0339.
  • Gu R, Liu H, Zhu Y, Liu X, Wang S, Liu Y. Is extracellular matrix (ECM) a promising scaffold biomaterial for bone repair? Histol Histopathol. 2021;36(12): doi: 10.14670/HH-18-370.
  • Chiang CE, Fang YQ, Ho CT, Assunção M, Lin SJ, Wang YC, Blocki A, Huang C-C. Bioactive decellularized extracellular matrix derived from 3D stem cell spheroids under macromolecular crowding serves as a scaffold for tissue. Engineering. 2021;10(11):e2100024. doi: 10.1002/adhm.202100024.
  • Rezvani Ghomi E, Nourbakhsh N, Akbari Kenari M, Zare M, Ramakrishna S. Collagen-based biomaterials for biomedical applications. J Biomed Mater Res B Appl Biomater. 2021;109:1986–1999. doi: 10.1002/jbm.b.34881.
  • Liu T, Li Z, Zhao L, Chen Z, Lin Z, Li B, Feng Z, Jin P, Zhang J, Wu Z. et al. Customized design 3D printed PLGA/Calcium sulfate scaffold enhances mechanical and biological properties for bone regeneration. Front Bioeng Biotechnol. 2022;10:874931. doi: 10.3389/fbioe.2022.874931.
  • Rahmani Del Bakhshayesh A, Mostafavi E, Alizadeh E, Asadi N, Akbarzadeh A, Davaran S. Fabrication of three-dimensional scaffolds based on nano-biomimetic collagen hybrid constructs for skin tissue engineering. ACS Omega. 2018;3:8605–8611. doi: 10.1021/acsomega.8b01219.
  • Benitez BK, Brudnicki A, Nalabothu P, Jackowski JAV, Bruder E, Mueller AA. Histologic aspect of the curved vomerine mucosa in. Cleft Lip And Palate. 2022;59(8):1048–1055. doi: 10.1177/10556656211031419.
  • Garcia N, Lau LDW, Lo CH, Cleland H, Akbarzadeh S. Understanding the mechanisms of spontaneous and skin-grafted wound repair: the path to engineered skin grafts. J Wound Care. 2023;32:55–62. doi: 10.12968/jowc.2023.32.1.55.
  • Sorg H, Sorg CGG. Skin wound healing: of players, patterns, and processes, European surgical research. Europaische chirurgische Forschung. Eur Surg Res. 2023;64(2):141–157. doi: 10.1159/000528271.
  • Tarassoli SP, Jessop ZM, Al-Sabah A, Gao N, Whitaker S, Doak S, Whitaker IS. Skin tissue engineering using 3D bioprinting: an evolving research field. J Plast Reconstr Aesthet Surg. 2018;71(5):615–623. doi: 10.1016/j.bjps.2017.12.006.
  • Kim BS, Kwon YW, Kong JS, Park GT, Gao G, Han W, Kim MB, Lee H, Kim JH, Cho DW. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials. 2018;168:38–53. doi: 10.1016/j.biomaterials.2018.03.040.
  • Zhou S, Wang Q, Huang A, Fan H, Yan S, Zhang Q. Advances in skin wound and scar repair by polymer scaffolds. Molecules. 2021;26(20). doi: 10.3390/molecules26206110.
  • Chouhan D, Mandal BB. Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside. Acta Biomater. 2020;103:24–51. doi: 10.1016/j.actbio.2019.11.050.
  • Jin R, Cui Y, Chen H, Zhang Z, Weng T, Xia S, Yu M, Zhang W, Shao J, Yang M. et al. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Acta Biomater. 2021;131:248–261. doi: 10.1016/j.actbio.2021.07.012.
  • Shin YC, Shin DM, Lee EJ, Lee JH, Kim JE, Song SH, Hwang DY, Lee JJ, Kim B, Lim D. et al. Hyaluronic acid/PLGA Core/Shell fiber matrices loaded with EGCG beneficial to diabetic wound healing. Adv Healthcare Materials. 2016;5(23):3035–3045. doi: 10.1002/adhm.201600658.
  • Yao CH, Yeh JY, Chen YS, Li MH, Huang CH. Wound-healing effect of electrospun gelatin nanofibres containing centella asiatica extract in a rat model. J Tissue Eng Regen Med. 2017;11:905–915. doi: 10.1002/term.1992.
  • Choi JI, Kim MS, Chung GY, Shin HS. Spirulina extract-impregnated alginate-PCL nanofiber wound dressing for skin regeneration. Biotechnol Bioprocess Eng. 2017;22(6):679–685. doi: 10.1007/s12257-017-0329-3.
  • Min D, Lee W, Bae IH, Lee TR, Croce P, Yoo SS. Bioprinting of biomimetic skin containing melanocytes. Exp Dermatol. 2018;27(5):453–459. doi: 10.1111/exd.13376.
  • Roshangar L, Rad JS, Kheirjou R, Khosroshahi AF. Using 3D-bioprinting scaffold loaded with adipose-derived stem cells to burns wound healing. J Tissue Eng Regen Med. 2021;15(6):546–555. doi: 10.1002/term.3194.
  • Su L, Zheng J, Wang Y, Zhang W, Hu D. Emerging progress on the mechanism and technology in wound repair. Biomed Pharmacother. 2019;117:109191. doi: 10.1016/j.biopha.2019.109191.
  • Bhardwaj N, Chouhan D, Mandal BB. Tissue engineered skin and wound healing: Current strategies and future directions. Curr Pharm Des. 2017;23:3455–3482. doi: 10.2174/1381612823666170526094606.
  • Olejnik A, Semba JA, Kulpa A, Dańczak-Pazdrowska A, Rybka JD. 3D bioprinting in skin related research. Recent Achiev Appl Perspect. 2022;11(1):26–38. doi: 10.1021/acssynbio.1c00547.
  • Keirouz A, Chung M, Kwon J, Fortunato G, Radacsi N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: a review. WIREs Nanomed Nanobiotechnol. 2020;12(4):e1626. doi: 10.1002/wnan.1626.
  • Hernández-Rangel A, Martin-Martinez ES. Collagen based electrospun materials for skin wounds treatment. J Biomed Mater Res A. 2021;109(9):1751–1764. doi: 10.1002/jbm.a.37154.
  • Wang Y, Zhang Y, Li T, Shen K, Wang KJ, Tian C, Hu D. Adipose mesenchymal stem cell derived exosomes promote keratinocytes and fibroblasts embedded in Collagen/Platelet-rich plasma scaffold and accelerate wound healing. Adv Mater. 2023;35(40):e2303642. doi: 10.1002/adma.202303642.
  • Sharma S, Rai VK, Narang RK, Markandeywar TS. Collagen-based formulations for wound healing: a literature review. Life Sci. 2022;290:120096. doi: 10.1016/j.lfs.2021.120096.
  • Damle MN, Chaudhari L, Tardalkar K, Bhamare N, Jagdale S, Gaikwad V, Chhabra D, Kumar B, Manuja A, Joshi MG. A biologically functional bioink based on extracellular matrix derived collagen for 3D printing of skin. Int J Biol Macromol. 2024;258:128851. doi: 10.1016/j.ijbiomac.2023.128851.
  • Niu C, Wang L, Ji D, Ren M, Ke D, Fu Q, Zhang K, Yang X. Fabrication of SA/Gel/C scaffold with 3D bioprinting to generate micro-nano porosity structure for skin wound healing: a detailed animal in vivo study. Vol. 11. 2022 p. 10. doi: 10.1186/s13619-022-00113-y.
  • Stem cell research & therapy. doi: 10.1186/s13287-019-1366-y.
  • Aslam S, Khan I, Jameel F, Zaidi MB, Salim A. Umbilical cord-derived mesenchymal stem cells preconditioned with isorhamnetin: potential therapy for burn wounds. World J Stem Cells. 2020;12:1652–1666. doi: 10.4252/wjsc.v12.i12.1652.
  • Nedelec B, De Oliveira A, Saint-Cyr M, Garrel DR. Differential effect of burn injury on fibroblasts from wounds and normal skin. Plast Reconstr Surg. 2007;119:2101–2109. doi: 10.1097/01.prs.0000260592.31969.06.
  • Bourne DA, James I, Wang S, Bliley J, Grahovac T, Mitchell RT, Brown SA, Ambrosio F, Ho J, Lannau B. et al. Treatment of burn contractures with allogeneic human dermal fibroblasts improves Vancouver scar scale: a phase I/II trial. J Plast Reconstr Aesthet Surg. 2021;74(12):3443–3476. doi: 10.1016/j.bjps.2021.08.018.
  • Patel J, Willis J, Aluri A, Awad S, Smith M, Banker Z, Mitchell M, Macias L, Berry J, King T. Three-dimensionally printed skin substitute using human dermal fibroblasts and human epidermal keratinocytes. Ann Plast Surg. 2021;86(6S):S628–s631. doi: 10.1097/sap.0000000000002886.
  • Zhang J, Yu H, Man M-Q, Hu L. Aging in the dermis: fibroblast senescence and its significance. Aging Cell. 2024;23(2):e14054. doi: 10.1111/acel.14054.
  • Shumakov VI, Onishchenko NA, Rasulov MF, Krasheninnikov ME, Zaidenov VA. Mesenchymal bone marrow stem cells more effectively stimulate regeneration of deep burn wounds than embryonic fibroblasts. Bull Exp Biol Med. 2003;136:192–195. doi: 10.1023/a:1026387411627.
  • Haghshenas M, Hoveizi E, Mohammadi T, Kazemi Nezhad SR. Use of embryonic fibroblasts associated with graphene quantum dots for burn wound healing in Wistar rats. In Vitro Cell Dev Biol Anim. 2019;55(4):312–322. doi: 10.1007/s11626-019-00331-w.
  • Oka T, Ohta K, Kanazawa T, Nakamura K. Interaction between macrophages and fibroblasts during wound healing of burn injuries in rats. Kurume Med J. 2016;62:59–66. doi: 10.2739/kurumemedj.MS00003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.