2,323
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Green Fabrication of silver nanoparticles by leaf extract of Byttneria Herbacea Roxb and their promising therapeutic applications and its interesting insightful observations in oral cancer

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 83-94 | Received 04 Oct 2022, Accepted 08 Jan 2023, Published online: 08 Feb 2023

References

  • Zhang XF, Liu ZG, Shen W, et al. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. IJMS. 2016; 17(9):1534.
  • Zhang Z, Shen W, Xue J, et al. Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale Res Lett. 2018;13(1):54.
  • Lee SH, Jun B-H. Silver nanoparticles: synthesis and application for nanomedicine. IJMS. 2019;20(4):865.
  • Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arabian J Chem. 2019; 12(8) :1823–1838.
  • Tarannum N, Gautam, YK, Divya  . Facile green synthesis and applications of silver nanoparticles: a state-of-the-art review. RSC Adv. 2019;9(60):34926–34948.
  • Srikar SK, Giri DD, Pal DB, et al. Green synthesis of AgNPs: a review. GSC. 2016;06(01):34–56.
  • Rafique M, Sadaf I, Rafique MS, et al. A review on green synthesis of AgNPs and their applications. Artif Cells Nanomed Biotechnol. 2017;45(7):1272–1291.
  • Almatroudi A. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci. 2020;15(1):819–839. pp.
  • Gaddam SA, Kotakadi VS, Subramanyam GK, et al. Multifaceted phytogenic silver nanoparticles by an insectivorous plant Drosera spatulata Labill var. Bakoensis and its potential therapeutic applications. Sci Rep. 2021;11(1):21969.
  • Subramanyam GK, Gaddam SA, Kotakadi VS, et al. Argyreia nervosa (samudra pala) leaf extract mediated silver nanoparticles and evaluation of their antioxidant, antibacterial activity, in vitro anticancer and apoptotic studies in KB oral cancer cell lines. Artif Cells Nanomed Biotechnol. 2021; 49(1) :635–650.
  • Ferlay J, Soerjomataram I, Ervik M. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries; Sept 2018.
  • Kotakadi VS, Gaddam SA, Kotha P, et al. Bio-inspired multifunctional zinc oxide nanoparticles by leaf extract of Andrographis serpilifolia and their enhanced antioxidant, antimicrobial, and antidiabetic activity—a 3-in-1 system. Part Sci Technol. 2022;40(4):485–499.. Taylor and Francis
  • Gaddam SA, Kotakadi VS, Subba Rao Y, et al. Efficient and robust biofabrication of silver nanoparticles by cassia alata leaf extract and their antimicrobial activity. J Nanostruct Chem. 2014;4(1):82–88.
  • Kotakadi VS, Gaddam SA, Venkata SK, et al. Biofabrication and spectral characterization of silver nanoparticles and their cytotoxic studies on human CD34 +ve stem cells. Biotech. 2016;6:216–221.
  • Palle SR, Penchalaneni J, Lavudi K, et al. Green synthesis of silver nanoparticles by leaf extracts of Boerhavia erecta and spectral characterization and their antimicrobial, antioxidant ad cytotoxic studies on ovarian cancer cell lines. Lett Appl Nano BioScience. 2020;9(3):1165–1176.
  • Pal S, Nisi R, Stoppa M, et al. Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega. 2017;2(7):3632–3639.
  • Venkata SK, Gaddam SA, Kotakadi VS, et al. Multifunctional silver nanoparticles by fruit extract of terminalia belarica and their therapeutic applications: a 3-in-1 system. Nano BioMed ENG. 2018;10(3):279–294.
  • Slavin YN, Asnis J, Häfeli UO, et al. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol. 2017;15(1):1–20.
  • Jia M, Zhang W, He T, et al. Evaluation of the genotoxic and oxidative damage potential of silver nanoparticles in human NCM460 and HCT116 cells. Int. J. Mol. Sci. 2020;21(5):1618.
  • Mathiyazhagan Narayanan SP, Natarajan D, Alahmadi TA, et al. Phyto-fabrication of silver nanoparticle using leaf extracts of Aristolochia bracteolata Lam and their mosquito larvicidal potential. Process Biochem. 2022; 121 :163–169.
  • Nguyen Thi Anh Nga VB, Raghavendra RS, Alshiekheid M, et al. Green fabrication of silver nanoparticles using Chloroxylon swietenia leaves and their application towards dye degradation and food borne pathogens. Food Chem Toxicol. 2022; Volume 165:113192.
  • Narayanan M, Divya S, Natarajan D, et al. Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L. and assess their possible biological applications. Process Biochem. 2021; 107: 91–99.
  • Lan Chi NT, Narayanan M, Chinnathambi A, et al. Fabrication, characterization, anti-inflammatory, and anti-diabetic activity of silver nanoparticles synthesized from Azadirachta indica kernel aqueous extract. Environ Res. 2022; 208:112684.
  • Manimegalai Sengani BV, Banerjee M, Choudhury AA, et al. Evaluation of the anti-diabetic effect of biogenic silver nanoparticles and intervention in PPARγ gene regulation. Environ Res. 2022; 215(Pt 3):114408.
  • Bulletin E. Special habitats and threatened plants of India: wildlife and protected areas, Vol.11. Chandrabani, Dehradun: wildlife institute of India.. 2008.
  • Somkuwar SR, Kamble RB, Chaturvedi A. Extending geographic distribution of Byttneria herbacea Roxb in Maharashtra state, India. J. Chem. Bio. Phy. Sci. Sec. B. 2014;4(3):3257–3261.
  • Sreeramulu N, Suthari S, Ragan A, et al. Ethno-botanicomedicine for common human ailments in Nalgonda and Warangal districts of Telangana, Andhra Pradesh. India Annals of Plant Sci. 2013;2:223.
  • Jain SP, Gupta N, Saini S, et al. Ethnomedicobotanical survey of Chhindwara Distrlct, Madhya Pradesh International Seminar on “Multidisciplinary Approaches in Angiosperm Systematics” Ethnobotany and Medicinal plants. 621.
  • Chandra Babu N, Naidu MT, Venkaiah M. Ethnobotanical plants of kotia hills of Vizianagaram district. A P India J Phytol. 2010;2:76–82.
  • Patel JV, Rohit M, Patel DS. Indigenous traditional knowledge (ITK) of pastoral community in banni region. Kachchh, Gujarat. 2003.
  • Prusti AB. Ethnobotanical exploration of Malkangiri district of Orissa, India. Ethnobotanical Leaflets. 2007;11:122–140.
  • Ashutosh KM, Mishra PK, Jyoti K, et al. Traditional botanical wisdom of Birhore tribes of Jharkhand. Ind J. Tradit Knowl. 2010;9:467–470.
  • Dey A, Gupta B, Jitendra, ND Traditional phytotherapy against skin diseases and in wound healing of the tribes of Purulia district, West Bengal, India. J. Med. Plants Res. 2012;6:4825–4831.
  • Mallik BK, Panda T, Padhy RN. Traditional herbal practices of the ethnic people of Kalahandi district of Odisha. Asian Pacific J. Trop. Biomedic. 2012;2:988–994.
  • Suthari S, Sreeramulu N, Omkar K, et al. The climbing plants of Northern Telangana in India and their ethnomedicinal and economic uses. Ind. J. Plant Sci. 2014;3:95.
  • Somkuwar SR, Dongre UJ, Chaudhary RR, et al. In-vitro screening of an antioxidant potential of Byttneria herbacea Roxb. Int.J.Curr.Microbiol.App.Sci. 2014;3(8):622–629.
  • National Medicinal Plant Board Medicinal plants of India. Pharmacol. Rev. 2012;48:3–9.
  • Subbaiah Kotakadi V, Aparna Gaddam S, K. Venkata S, et al. Ficus fruit-mediated biosynthesis of silver nanoparticles and their antibacterial activity against antibiotic-resistant E.coli strains. CNANO. 2015;11(4):527–538.
  • Kotakadi VS, Gaddam SA, Sucharitha Venkata K, et al. New generation of bactericidal silver nanoparticles against different antibiotic-resistant Escherichia coli strains. Appl Nanosci. 2015;5(7) :847–855.
  • Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31(2):346–356.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.
  • Alley MC, F M Ludiere DA, Monks A, et al. Validation of an automated microculturetetrazolium assay (MTA) to assess growth and drug sensitivity of human tumor cell lines. Proc. Am. Assoc. Cancer Res. 1986;27:389.
  • Adoni M, Yadam M, Gaddam SA, et al. Antimicrobial, antioxidant, and dye degradation properties of biosynthesized silver nanoparticles from Artemisia Annua L. Lett Appl NanoBioScience. 2021;10(1):1981–1992.
  • Palithya S, Gaddam SA, Kotakadi VS, et al. Biosynthesis of silver nanoparticles using leaf extract of Decaschistia crotonifolia and its antibacterial, antioxidant, and catalytic applications. Green Chem Lett and Rev. 2021;14(1):137–152.
  • Palithya S, Gaddam SA, Kotakadi VS, et al. Green synthesis of silver nanoparticles using flower extracts of Aerva lanata and their biomedical applications. Part Sci Technol. 2022;40(1):84–96.
  • Azarbani F, Shiravand S. Green synthesis of silver nanoparticles by Ferulago macrocarpa flowers extract and their antibacterial, antifungal and toxic effects. Green Chem Lett Rev. 2020;13(1):41–49.
  • Cao X, Zhu L, Bai Y, et al. Green one-step synthesis of silver nanoparticles and their biosafety and antibacterial properties. Green Chem Lett Rev. 2022;15(1):28–34.
  • Ojemaye MO, Okoh SO, Okoh AI. Silver nanoparticles (AgNPs) facilitated by plant parts of crataegus ambigua becker AK extracts and their antibacterial, antioxidant and antimalarial activities. Green Chem Lett Rev. 2021;14(1):51–61.
  • Khatami M, Sharifi I, Nobre MAL, et al. Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chem Lett Rev. 2018;11(2):125–134.
  • Yu X, Li J, Mu D, et al. Green synthesis and characterizations of silver nanoparticles with enhanced antibacterial properties by secondary metabolites of Bacillus subtilis (SDUM301120. Green Chem Lett Rev. 2021;14(2):190–203.
  • Hajebi S, Tabrizi MH, Moghaddam MN, et al. Rapeseed flower pollen bio-green synthesized silver nanoparticles: a promising antioxidant, anticancer and antiangiogenic compound. J Biol Inorg Chem. 2019;24(3):395–404.
  • Al-Sheddi ES, Farshori NN, Al-Oqail MM, et al. Anticancer potential of green synthesized silver nanoparticles using extract of nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg Chem Appl. 2018;2018(1):9390784.
  • Muhammad Qasim N, Zohra T, Khalil AT, et al. Seripheidium quettense mediated green synthesis of biogenic silver nanoparticles and their theranostic applications. Green Chem Lett Rev. 2019;12(3):310–322.
  • Das S, Das J, Samadder A, et al. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloids Surf B Biointerfaces. 2013;101:325–336.
  • Netala VR, Bethu MS, Sana S, et al. Eco-friendly synthesis of silver nanoparticles using leaf extract of Flemingia wightiana: spectral characterization, antioxidant and anticancer activity studies. SN Appl Sci. 2020;2:884.
  • V.m S, Pandurangan M, Kim D, et al. Green synthesis: in-vitro anticancer activity of silver nanoparticles on human cervical cancer cells. J Clust Sci. 2016;27(2):671–681.
  • Pannerselvam B, Durai P, Thiyagarajan D, et al. Facile synthesis of silver nanoparticles using Asian spider flower and its in vitro cytotoxic activity against human breast carcinoma cells. Processes. 2020;8(4):430.
  • Tabrizi MH, Karimi E, Namvar F, et al. Silver–palm pollen nanocomposite exhibits antiproliferative, antioxidant, and proapoptotic properties on MCF-7 breast cancer cells. Res Chem Intermed. 2018;44(11):6537–6548.
  • Banerjee PP, Bandyopadhyay A, Harsha SN, et al. Mentha arvensis (Linn.)-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells. Breast Cancer. 2017;9:265–278.