2,601
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Design and assembly of a nanoparticle, antibody, phthalocyanine scaffold for intracellular delivery of photosensitizer to human papillomavirus-transformed cancer cells

ORCID Icon & ORCID Icon
Pages 205-216 | Received 02 Sep 2022, Accepted 30 Mar 2023, Published online: 21 Apr 2023

References

  • Crous A, Abrahamse H. Effective gold Nanoparticle-Antibody-Mediated drug delivery for photodynamic therapy of lung cancer stem cells. Int J Mol Sci. 2020;21(11):3742.
  • Stuchinskaya T, Moreno M, Cook MJ, et al. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci. 2011;10(5):822–831.
  • Hudson R, Carcenac M, Smith K, et al. The development and characterisation of porphyrin isothiocyanate monoclonal antibody conjugates for photoimmunotherapy. Br J Cancer. 2005;92(8):1442–1449.
  • Malatesti N, Smith K, Savoie H, et al. Synthesis and in vitro investigation of cationic 5,15-diphenylporphyrin-monoclonal antibody conjugates as targeted photodynamic sensitisers. Int J Cancer. 2006;28:1561–1569.
  • Amina SJ, Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomed. 2020;15:9823–9857.
  • Di Pasqua AJ, Mishler RE, Ship Y-L, et al. Preparation of antibody-conjugated gold nanoparticles. Mater Lett. 2009;63(21):1876–1879.
  • Jazayeri MH, Amani H, Pourfatollah AK, et al. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Bio-Sens Res. 2016;9:17–22.
  • Okyem S, Awotunde O, Ogunlusi T, et al. High-affinity points of interaction on antibody allow synthesis of stable and highly functional antibody–gold nanoparticle conjugates. Bioconjug Chem. 2021;32(8):1753–1762.
  • Safavi-Sohi R, Maghari S, Raoufi M, et al. Bypassing protein corona issue on active targeting: zwitterionic coatings dictate specific interactions of targeting moieties and cell receptors. ACS Appl Mater Interfaces. 2016;8(35):22808–22818.
  • Kim JS, Choi DK, Park SW, et al. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay. Biochem Biophys Res Commun. 2015;467(4):771–777.
  • Alarcón-Segovia D, Llorente L, Ruíz-Argüelles A. The penetration of autoantibodies into cells may induce tolerance to self by apoptosis of autoreactive lymphocytes and cause autoimmune disease by dysregulation and/or cell damage. J Autoimmun. 1996;9(2):295–300.
  • Alarcon-Segovia D, Ruiz-Arguelles A, Llorente L. Antibody penetration into living cells. II. Anti-ribonucleoprotein IgG penetrates into T gamma lymphocytes causing their deletion and the abrogation of suppressor function. J Immunol. 1979;122(5):1855–1862.
  • Noble PW, Bernatsky S, Clarke AE, et al. DNA-damaging autoantibodies and cancer: the lupus butterfly theory. Nat Rev Rheumatol. 2016;12(7):429–434.
  • Petri M, Orbai AM, Alarcón GS, et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64(8):2677–2686.
  • Douglas JNGL, Gardner LA, Levin MC. Antibodies to an intracellular antigen penetrate neuronal cells and cause deleterious effects. J Clin Cell Immunol. 2013;4:134.
  • Nombona N, Antunes E, Chidawanyika W, et al. Synthesis, photophysics and photochemistry of phthalocyanine-polylysine conjugates in the presence of metal nanoparticles against Staphylococcus aureus. J Photochem Photobiol A. 2012;233:24–33.
  • Zhang G, Zhang J, Gao Y, et al. Strategies for targeting undruggable targets. Expert Opin Drug Discov. 2022;17(1):55–69.
  • Dang CV, Reddy EP, Shokat KM, et al. Drugging the ‘undruggable’ cancer targets. Nat Rev Cancer. 2017;17(8):502–508.
  • Ghetie V, Ward ES. Transcytosis and catabolism of antibody. Immunol Res. 2002;25(2):97–113.
  • Lisi S, Sisto M, Soleti R, et al. Fcgamma receptors mediate internalization of anti-Ro and anti-La autoantibodies from Sjögren’s syndrome and apoptosis in human salivary gland cell line A-253. J Oral Pathol Med. 2007;36(9):511–523.
  • Jang JY, Jeong JG, Jun HR, et al. A nucleic acid-hydrolyzing antibody penetrates into cells via caveolae-mediated endocytosis, localizes in the cytosol and exhibits cytotoxicity. Cell Mol Life Sci. 2009;66(11-12):1985–1997.
  • Choi DK, Bae J, Shin SM, et al. A general strategy for generating intact, full-length IgG antibodies that penetrate into the cytosol of living cells. mAbs. 2014;6(6):1402–1414.
  • Lim YT, Cho MY, Lee JM, et al. Simultaneous intracellular delivery of targeting antibodies and functional nanoparticles with engineered protein G system. Biomaterials. 2009;30(6):1197–1204.
  • Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles. Chem Soc Rev. 2017;46(14):4218–4244.
  • Bannunah AZ, Vllasaliu D, Lord J, et al. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol Pharm. 2014;11(12):4363–4373.