1,144
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Facile biosynthesis, characterisation and biotechnological application of ZnO nanoparticles mediated by leaves of Cnidoscolus aconitifolius

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 309-317 | Received 25 Oct 2022, Accepted 01 Jun 2023, Published online: 10 Jun 2023

References

  • Dave PN, Chaturvedi S. 2021. The economic contributions of nanotechnology to green and sustainable growth. In Handbook of Functionalized Nanomaterials (pp. 365–380). Elsevier, Amsterdam.
  • Fakhari S, Jamzad M, Kabiri Fard H. Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem Lett Rev. 2019;12(1):19–24.
  • Kah M, Tufenkji N, White JC. Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol. 2019;14(6):532–540.
  • Okey‐Onyesolu CF, Hassanisaadi M, Bilal M, et al. Nanomaterials as nanofertilizers and nanopesticides: an overview. ChemistrySelect. 2021;6(33):8645–8663.
  • Liu Q, Li F, Lu H, et al. Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles. Food Chem. 2018;242:256–263.
  • Sharma S, Singh S, Ganguli AK, et al. Anti-drift nano-stickers made of graphene oxide for targeted pesticide delivery and crop pest control. Carbon. 2017;115:781–790.
  • Fincheira P, Tortella G, Duran N, et al. Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy. Crit Rev Biotechnol. 2020;40(1):15–30.
  • Dimkpa CO, White JC, Elmer WH, et al. Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. J Agric Food Chem. 2017;65(39):8552–8559.
  • Chaudhary RG, Bhusari GS, Tiple AD, et al. Metal/metal oxide nanoparticles: toxicity, applications, and future prospects. Curr Pharm Des. 2019;25(37):4013–4029.
  • Avellan A, Yun J, Morais BP, et al. Critical review: role of inorganic nanoparticle properties on their foliar uptake and in planta translocation. Environ Sci Technol. 2021;55(20):13417–13431.
  • Abdullah JAA, Eddine LS, Abderrhmane B, et al. Green synthesis and characterization of iron oxide nanoparticles by pheonix dactylifera leaf extract and evaluation of their antioxidant activity. Sustainable Chem Pharm. 2020;17:100280.
  • Fuku X, Diallo A, Maaza M. Nanoscaled electrocatalytic optically modulated ZnO nanoparticles through green process of Punica granatum L. and their antibacterial activities. Int J Electrochem. 2016;2016:1–10.
  • Naseer M, Aslam U, Khalid B, et al. Green route to synthesize zinc oxide nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci Rep. 2020;10(1):1–10.
  • Sackey J, Nwanya A, Bashir AKH, et al. Electrochemical properties of Euphorbia pulcherrima mediated copper oxide nanoparticles. Mater Chem Phys. 2020;244:122714.
  • Aldeen TS, Mohamed HEA, Maaza M. ZnO nanoparticles prepared via a green synthesis approach: physical properties, photocatalytic and antibacterial activity. J Phys Chem Solids. 2022;160:110313.
  • Soren S, Kumar S, Mishra S, et al. Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method. Microb Pathog. 2018;119:145–151.
  • Singh A, Singh NB, Hussain I, et al. Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J Biotechnol. 2016;233:84–94.
  • Adrees M, Khan ZS, Hafeez M, et al. Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous cd and water deficient stress. Ecotoxicol Environ Saf. 2021;208:111627.
  • El-Mahdy MT, Elazab DS. Impact of zinc oxide nanoparticles on pomegranate growth under in vitro conditions. Russ J Plant Physiol. 2020;67(1):162–167.
  • Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ. 2015;514:131–139.
  • Raliya R, Nair R, Chavalmane S, et al. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics. 2015;7(12):1584–1594.
  • Šebesta M, Kolenčík M, Sunil BR, et al. Field application of ZnO and TiO2 nanoparticles on agricultural plants. Agronomy. 2021;11(11):2281.
  • Watson JL, Fang T, Dimkpa CO, et al. The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals. 2015;28(1):101–112.
  • Zafar H, Ali A, Ali JS, et al. Effect of ZnO nanoparticles on brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci. 2016;7:535–539.
  • Priyanka N, Geetha N, Ghorbanpour M, Venkatachalam, P. 2019. Role of engineered zinc and copper oxide nanoparticles in promoting plant growth and yield: present status and future prospects. Advances in Phytonanotechnology, 183–201.
  • Kalra T, Tomar PC, Arora K. Micronutrient encapsulation using nanotechnology: nanofertilizers. Plant Arch. 2020;20:1748–1753.
  • Nongbet A, Mishra AK, Mohanta YK, et al. Nanofertilizers: a smart and sustainable attribute to modern agriculture. Plants. 2022;11(19):2587.
  • Wang SL, Nguyen AD. Effects of Zn/B nanofertilizer on biophysical characteristics and growth of coffee seedlings in a greenhouse. Res Chem Intermed. 2018;44(8):4889–4901.
  • Mfon RE, Odiaka NI, Sarua A. Interactive effect of colloidal solution of zinc oxide nanoparticles biosynthesized using Ocimum gratissimum and Vernonia amygdalina leaf extracts on the growth of Amaranthus cruentus seeds. African Journal of Biotechnology. 2017;16(26):1481–1489.
  • Saboor A, Ali MA, Hussain S, et al. Zinc nutrition and arbuscular mycorrhizal symbiosis effects on maize (Zea mays L.) growth and productivity. Saudi J Biol Sci. 2021;28(11):6339–6351.
  • Umair Hassan M, Aamer M, Umer Chattha M, et al. The critical role of zinc in plants facing the drought stress. Agriculture. 2020;10(9):396.
  • Sharma P, Urfan M, Anand R, et al. Green synthesis of zinc oxide nanoparticles using Eucalyptus lanceolata leaf litter: characterization, antimicrobial and agricultural efficacy in maize. Physiol Mol Biol Plants. 2022;28(2):363–381.
  • Rai-Kalal P, Jajoo A. Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiol Biochem. 2021;160:341–351.
  • Tondey M, Kalia A, Singh A, et al. Seed priming and coating by nano-scale zinc oxide particles improved vegetative growth, yield and quality of fodder maize (Zea mays). Agronomy. 2021;11(4):729.
  • Tripathi DK, Singh S, Singh VP, et al. Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Front Environ Sci. 2016;4:46–56.
  • Giglou MT, Giglou RH, Esmaeilpour B, et al. A new method in mitigation of drought stress by chitosan-coated iron oxide nanoparticles and growth stimulant in peppermint. Ind Crops Prod. 2022;187:115286.
  • Mony C, Kaur P, Rookes JE, et al. Nanomaterials for enhancing photosynthesis: interaction with plant photosystems and scope of nanobionics in agriculture. Environ Sci Nano. 2022;9(10):3659–3683.
  • Rico CM, Barrios AC, Tan W, et al. Physiological and biochemical response of soil-grow barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res Int. 2015;22(14):10551–10558.
  • Sun H, Qu G, Li S, et al. Iron nanoparticles induced the growth and physio-chemical changes in Kobresia capillifolia seedlings. Plant Physiol Biochem. 2023;194:15–28.
  • Faizan M, Faraz A, Yusuf M, et al. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynt. 2018;56(2):678–686.
  • Dangana RS, George RC, Agboola FK. The biosynthesis of zinc oxide nanoparticles using aqueous leaf extracts of Cnidoscolus aconitifolius and their biological activities. Green Chem Lett Rev. 2023;16(1):2169591.
  • Reddy SB, Mandal BK. Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv Powder Technol. 2017;28(3):785–797.
  • Liao WC, Lai YC, Yuan MC, et al. Antioxidative activity of water extract of sweet potato leaves in Taiwan. Food Chem. 2011;127(3):1224–1228.
  • Asimovic Z, Sarajevo FS, Cengic L, et al. Spectrophotometric determination of total chlorophyll content in fresh vegetables. Godina LXI Broj. 2016;66:104.
  • McCord JM, Fridovich I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprien). J Biol Chem. 1969;244(22):6049–6055.
  • Kumar A, Dutt S, Bagler G, et al. Engineering a thermo-stable superoxide dismutase functional at sub-zero to > 50 C, which also tolerates autoclaving. Sci Rep. 2012;2(1):1–8.
  • Aebi H. B. Isolation, purification, characterization and assay of antioxygenic enzymes. (13) Catalase in vitro. Methods Enzymol. 1984;105:121–126.
  • Aebi H. 1970. Methoden der enzymatischen analyse. Vol 1. (Bermeyer, H. U. ed.) Verlag Chemie, Weinheim, p. 637.
  • Bandeira M, Giovanela M, Roesch-Ely M, et al. Green synthesis of zinc oxide nanoparticles: a review of the synthesis methodology and mechanism of formation. Sustainable Chem Pharm. 2020;15(2):100223.
  • Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. 2021;199(1):344–370.
  • Agarwal H, Shanmugam V. A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: mechanism-based approach. Bioorg Chem. 2020;94:103423.
  • Zare E, Pourseyedi S, Khatami M, et al. Simple biosynthesis of zinc oxide nanoparticles using nature’s source and it’s in vitro bio-activity. J Mol Struct. 2017;1146:96–103.
  • Ahmed B, Ishwarya R, Alsalhi MS, et al. Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using Aloe socotrina leaf extract: a novel drug delivery approach. J Drug Delivery Sci Technol. 2020;55(9):101465.
  • Muthuvel A, Jothibas M, Manoharan C. Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in vitro antioxidant activity. J Environ Chem Eng. 2020;8(2):103705.
  • Raoufi D. Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renew Energy. 2013;50:932–937.
  • Tarafdar JC, Raliya R, Mahawar H, et al. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res. 2014;3(3):257–262.
  • Singh A, Singh NÁ, Afzal S, et al. Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J Mater Sci. 2018;53(1):185–201.
  • Soliman AS, El-Feky SA, Darwish E. Alleviation of salt stress on moringa peregrina using foliar application of nanofertilizers. Journal of Horticulture and Forestry. 2015;7(2):36–47.
  • Venkatachalam P, Jayaraj M, Manikandan R, et al. Zinc oxide nanoparticles (ZnO NPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem. 2017;110:59–69.
  • Zhu J, Shen S, Zeng X, et al. Environmental science. Environment Science Nano. 2020;1(2):1–43.
  • Dimkpa CO, McLean JE, Britt DW, et al. Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology. 2015;24(1):119–129.
  • Iwalewa EO, Adewunmi CO, Omisore NOA, et al. Pro-and antioxidant effects and cytoprotective potentials of nine edible vegetables in Southwest Nigeria. J Med Food. 2005;8(4):539–544.
  • Oyagbemi AA, Odetola AA, Azeez OI. Ameliorative effects of Cnidoscolus aconitifolius on anaemia and osmotic fragility induced by protein energy malnutrition.Afr J Biotechnol. 2008;7(11):1721–1726.
  • Sabir S, Arshad M, Chaudhari SK. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Scientific World J. 2014;2014:1–8.
  • Pranjali P, Meher MK, Raj R, et al. Physicochemical and antibacterial properties of PEGylated zinc oxide nanoparticles dispersed in peritoneal dialysis fluid. ACS Omega. 2019;4(21):19255–19264.
  • Manjunatha R, Usharani K, Dhananjay N. Synthesis and characterization of ZnO nanoparticles: a review. J Pharmacognosy Phytochem. 2019;8(3):1095–1101.