966
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of Aluminium phthalocyanine nanoconjugate on melanoma stem cells

ORCID Icon, ORCID Icon & ORCID Icon
Pages 334-345 | Received 01 Sep 2022, Accepted 24 Jun 2023, Published online: 16 Jul 2023

References

  • Balch CM, Soong SJ, Gershenwald JE, et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American joint committee on cancer melanoma staging system. J Clin Oncol. 2001;19(16):3622–3634. doi: 10.1200/JCO.2001.19.16.3622.
  • Ferlay J, Ervik M, Lam F, et al. Global cancer observatory: cancerToday, Lyon: International Agency for Research on Cancer; 2021, https://gco.iarc.fr/today.
  • Schatton T, Frank MH. Cancer stem cells and human malignant melanoma. Pigment Cell Melanoma Res. 2008;21(1):39–55. doi: 10.1111/j.1755-148X.2007.00427.x.
  • Gore ME, Larkin JMG. Challenges and opportunities for converting renal cell carcinoma into a chronic disease with targeted therapies. Br J Cancer. 2011;104(3):399–406. doi: 10.1038/sj.bjc.6606084.
  • Diaz LA, Jr, Williams RT, Wu J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486(7404):537–540. doi: 10.1038/nature11219.
  • Dummer R, Hauschild A, Lindenblatt N, et al. Cutaneous melanoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl (5):v126–v132. doi: 10.1093/annonc/mdv297.
  • Kozovska Z, Gabrisova V, Kucerova L. Malignant melanoma: diagnosis, treatment and cancer stem cells. Neoplasma. 2016;63(4):510–517. PMID: 27268913. doi: 10.4149/neo_2016_403.
  • Tang J-Q, Hou X-Y, Yang C-S, et al. Recent developments in nanomedicine for melanoma treatment. Int J Cancer. 2017;141(4):646–653. doi: 10.1002/ijc.30708.
  • Naidoo C, Kruger CA, Abrahamse H. Photodynamic therapy for metastatic melanoma treatment, a review. Technol Cancer Res Treat. 2018;17:1533033818791795. doi: 10.1177/1533033818791795.
  • Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139–148. doi: 10.1016/j.ejca.2015.11.016.
  • Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328–337. doi: 10.1038/nature12624.
  • Quintana E, Shackleton M, Sabel MS, et al. Efficient tumour formation by single human melanoma cells. Nature. 2008;456(7222):593–598. doi: 10.1038/nature07567.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi: 10.1016/j.cell.2006.07.024.
  • Barroca V, Lassalle B, Coureuil M, et al. Mouse differentiating spermatogonia can generate germinal stem cells in vivo. Nat Cell Biol. 2009;11(2):190–196. doi: 10.1038/ncb1826.
  • Filipp FV, Li C, Boiko AD. CD271 is a molecular switch with divergent roles in melanoma and melanocyte development. Sci Rep. 2019;9(1):7696. doi: 10.1038/s41598-019-42773-y.
  • Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396(6712):643–649. doi: 10.1038/25292.
  • Karbanová J, Lorico A, Bornhäuser M, et al. Prominin-1/CD133: lipid raft association, detergent resistance, and immunodetection. Stem Cells Transl Med. 2018;7(2):155–160. doi: 10.1002/sctm.17-0223.
  • Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med. 2018;7(1):e18. doi: 10.1186/s40169-018-01981.
  • Toledo-Guzmán ME, Bigoni-Ordóñez GD, Hernández MI, et al. Cancer stem cell impact on clinical oncology. World J Stem Cells. 2018;10(12):183–195. doi: 10.4252/wjsc.v10.i12.183.
  • Kessel D. Photodynamic therapy: a brief history. JCM. 2019;8(10):1581. doi: 10.3390/jcm8101581.
  • Wang X, Ramamurthy G, Shirke AA, et al. Photodynamic therapy is an effective adjuvant therapy for image-guided surgery in prostate cancer. Cancer Res. 2020;80(2):156–162. doi: 10.1158/0008-5472.CAN-19-0201.
  • Lan M, Zhao S, Liu W, et al. Photosensitizers for photodynamic therapy. Adv Healthc Mater. 2019;8(13):e1900132. doi: 10.1002/adhm.201900132.
  • Ozog DM, Rkein AM, Fabi SG, et al. Photodynamic therapy: a clinical consensus guide. Dermatol Surg. 2016;42(7):804–827. doi: 10.1097/DSS.0000000000000800.
  • Bichakjian CK, Olencki T, Aasi SZ, et al. Basal cell skin cancer, version 1.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2016;14(5):574–597. doi: 10.6004/jnccn.2016.0065.
  • Gilaberte Y, Aguilar M, Almagro M, et al. Spanish-Portuguese consensus statement on the use of daylight photodynamic therapy with methyl aminolevulinate in the treatment of actinic keratosis. Actas Dermo-Sifiliográficas (English Edition). 2015;106(8):623–631. doi: 10.1016/j.adengl.2015.07.019.
  • Ravanat J, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B. 2001;63(1-3):88–102. doi: 10.1016/s1011-1344(01)00206-8.
  • Huis In 't Veld RV, Ritsma L, Kleinovink JW, et al. Photodynamic cancer therapy enhances accumulation of nanoparticles in tumor-associated myeloid cells. J Control Release. 2020;320:19–31. doi: 10.1016/j.jconrel.2019.12.052.
  • Kong F, Zou H, Liu X, et al. MiR-7112-3p targets PERK to regulate the endoplasmic reticulum stress pathway and apoptosis induced by photodynamic therapy in colorectal cancer CX-1 cells. Photodiagnosis Photodyn Ther. 2020;29:101663. doi: 10.1016/j.pdpdt.2020.101663.
  • Ethirajan M, Chen Y, Joshi P, et al. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev. 2011;40(1):340–362. doi: 10.1039/b915149b.
  • Xu Y-K, Hwang S, Kim S, et al. Two orders of magnitude fluorescence enhancement of aluminum phthalocyanines by gold nanocubes: a remarkable improvement for cancer cell imaging and detection. ACS Appl Mater Interfaces. 2014;6(8):5619–5628. doi: 10.1021/am500106c.
  • Hong EJ, Choi DG, Shim MS. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm Sin B. 2016;6(4):297–307. doi: 10.1016/j.apsb.2016.01.007.
  • Calavia PG, Bruce G, Pérez-García L, et al. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem Photobiol Sci. 2018;17(11):1534–1552. doi: 10.1039/C8PP00271A.
  • Mohammadi Z, Sazgarnia A, Rajabi O, et al. Comparative study of x-ray treatment and photodynamic therapy by using 5-aminolevulinic acid conjugated gold nanoparticles in a melanoma cell line. Artif Cells Nanomed Biotechnol. 2017;45(3):467–473. doi: 10.3109/21691401.2016.1167697.
  • Oliveira CS, Turchiello R, Kowaltowski AJ, et al. Major determinants of photoinduced cell death: subcellular localization versus photosensitization efficiency. Free Radic Biol Med. 2011;51(4):824–833. doi: 10.1016/j.freeradbiomed.2011.05.023.
  • Mfouo-Tynga I, El-Hussein A, Abdel-Harith M, et al. Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell lines. IJN. 2014;9(1):3771–3780. doi: 10.2147/IJN.S63371
  • Lee BWL, Ghode P, Ong DST. Redox regulation of cell state and fate. Redox Biol. 2019;25:101056. doi: 10.1016/j.redox.2018.11.014.
  • Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15(6):411–421. doi: 10.1038/nrm3801.
  • Li Z, Wang C, Deng H, et al. Robust photodynamic therapy using 5-ALA-Incorporated nanocomplexes cures metastatic melanoma through priming of CD4 + CD8+ double positive T cells. Adv Sci (Weinh). 2019;6(5):1802057. doi: 10.1002/advs.201802057.
  • Yin Q, Shi X, Lan S, et al. Effect of melanoma stem cells on melanoma metastasis. Oncol Lett. 2021;22(1):566. doi: 10.3892/ol.2021.12827.
  • Naumann SC, Roos WP, Jöst E, et al. Temozolomide- and fotemustine-Induced apoptosis in human malignant melanoma cells: response related to MGMT, MMR, DSBs, and P53. Br J Cancer. 2009;100(2):322–333. doi: 10.1038/sj.bjc.6604856.
  • Beck D, Niessner H, Smalley KSM, et al. Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells. Sci Signal. 2013;6(260):ra7. doi: 10.1126/scisignal.2003057.
  • Mohammadalipour Z, Rahmati M, Khataee A, et al. Differential effects of N-TiO2 nanoparticle and its photo-activated form on autophagy and necroptosis in human melanoma A375 cells. J Cell Physiol. 2020;28:1–14. doi: 10.1002/jcp.29479.
  • Majeed SA, Sekhosana KE, Tuhl A. Progress on phthalocyanine-conjugated Ag and Au nanoparticles: synthesis, characterization, and photo-physicochemical properties. Arab J Chem. 2020;13(12):8848–8887. doi: 10.1016/j.arabjc.2020.10.014.
  • Chen X, Ye Q, Ma D, et al. Gold Nanoparticles-Pyrrolidinonyl metal phthalocyanine nanoconjugates: synthesis and photophysical properties. J Lumin. 2018;195:348–355. doi: 10.1016/j.jlumin.2017.11.047.
  • Decker R, Oldenburg S. Covalent Bioconjugation of Antibodies to Carboxyl Terminated Nanoparticles PDF Protein Purification Nanoparticle https://www.scribd.com/document/511702433/Decker-R-Oldenburg-S-Covalent-Bioconjugation-of-Antibodies-to-Carboxyl-Terminated-Nanoparticles. (accessed 2021 -10 -25).
  • Curry D, Cameron A, MacDonald B, et al. Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems. Nanoscale. 2015;7(46):19611–19619. doi: 10.1039/C5NR05826K.
  • Ranyuk E, Cauchon N, Klarskov K, et al. Phthalocyanine–peptide conjugates: receptor-targeting bifunctional agents for imaging and photodynamic therapy. J Med Chem. 2013;56(4):1520–1534. doi: 10.1021/jm301311c.
  • Crous A, Dhilip Kumar SS, Abrahamse H. Effect of dose responses of hydrophilic aluminium (III) phthalocyanine chloride tetrasulphonate based photosensitizer on lung cancer cells. J Photochem Photobiol B. 2019;194:96–106. doi: 10.1016/j.jphotobiol.2019.03.018.
  • Goodman CM, McCusker CD, Yilmaz T, et al. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem. 2004;15(4):897–900. doi: 10.1021/bc049951i.
  • Murphy CJ, Gole AM, Stone JW, et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res. 2008;41(12):1721–1730. doi: 10.1021/ar800035u.
  • Katas H, Moden NZ, Lim CS, et al. Biosynthesis and potential applications of silver and gold nanoparticles and their chitosan-based nanocomposites in nanomedicine. J Nanotechnol. 2018;2018:e4290705–13. doi: 10.1155/2018/4290705.
  • Vasquez G, Hernández Y, Coello Y. Portable Low-Cost instrumentation for monitoring rayleigh scattering from chemical sensors based on metallic nanoparticles. Sci Rep. 2018;8(1):14903. doi: 10.1038/s41598-018-33271-8.
  • Algorri JF, Ochoa M, Roldán-Varona P, et al. Light technology for efficient and effective photodynamic therapy: a critical review. Cancers. 2021;13(14):3484. doi: 10.3390/cancers13143484.
  • Li X-Y, Tan L, Dong L-W, et al. Susceptibility and resistance mechanisms during photodynamic therapy of melanoma. Front Oncol. 2020;10:597. doi: 10.3389/fonc.2020.00597.
  • Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016;8(4):409–427. doi: 10.1007/s12551-016-0218-6.
  • Yu X, Trase I, Ren M, et al. Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater. 2016;2016:e1087250–15. doi: 10.1155/2016/1087250.
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. E57 doi: 10.3390/pharmaceutics10020057.
  • Wu B, Zhao N. A targeted nanoprobe based on carbon nanotubes-natural biopolymer chitosan composites. Nanomaterials. 2016;6(11):216. doi: 10.3390/nano6110216.
  • Demchenko A. Beyond annexin V: fluorescence response of cellular membranes to apoptosis. Cytotechnology. 2013;65(2):157–172. doi: 10.1007/s10616-012-9481-y.
  • Rieger AM, Nelson KL, Konowalchuk JD, et al. Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. JoVE. 2011;(50):2597. doi: 10.3791/2597.
  • Baldea I, Olteanu DE, Bolfa P, et al. Efficiency of photodynamic therapy on WM35 melanoma with synthetic porphyrins: role of chemical structure, intracellular targeting and antioxidant defense. J Photochem Photobiol B. 2015;151:142–152. doi: 10.1016/j.jphotobiol.2015.07.019.
  • Mkhobongo B, Chandran R, Abrahamse H. In vitro photodynamic treatment modality for A375 melanoma cell line using a sulphonated aluminum phthalocyanine Chloride-Photosensitizer-Gold nanoparticle conjugate. Pharmaceutics. 2022;14(11):2474. doi: 10.3390/pharmaceutics14112474.
  • Xin J, Wang S, Wang B, et al. AlPcS4-PDT for gastric cancer therapy using gold nanorod, cationic liposome, and pluronic® F127 nanomicellar drug carriers. Int J Nanomedicine. 2018;13:2017–2036. doi: 10.2147/IJN.S154054.
  • Nene LC, Nyokong T. Enhancement of the in vitro anticancer photo-sonodynamic combination therapy activity of cationic thiazole-phthalocyanines using gold and silver nanoparticles. Journal of Photochemistry and Photobiology A: chemistry. 2023;435:114339. doi: 10.1016/j.jphotochem.2022.114339.
  • Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6(2):99–104. doi: 10.1038/sj.cdd.4400476.
  • Chan W-H. Photodynamic treatment induces an apoptotic pathway involving calcium, nitric oxide, P53, P21-Activated kinase 2, and c-Jun N-Terminal kinase and inactivates survival signal in human umbilical vein endothelial cells. Int J Mol Sci. 2011;12(2):1041–1059. doi: 10.3390/ijms12021041.
  • Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem. 1999;68(1):383–424. doi: 10.1146/annurev.biochem.68.1.383.
  • Slee EA, Adrain C, Martin SJ. Executioner caspase- 3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem. 2001;276(10):7320–7326. doi: 10.1074/jbc.M008363200.
  • Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99–163. doi: 10.1152/physrev.00013.2006.
  • Fridman JS, Lowe SW. Control of apoptosis by P53. Oncogene. 2003;22(56):9030–9040. doi: 10.1038/sj.onc.1207116.
  • Simbulan-Rosenthal, C. M.; Dougherty, R.; Vakili, S.; Ferraro, A. M.; Kuo, L.-W.; Alobaidi, R.; Aljehane, L.; Gaur, A.; Sykora, P.; Glasgow, E.; Agarwal, S.; Rosenthal, D. S. CRISPR-Cas9 knockdown and induced expression of CD133 reveal essential roles in melanoma invasion and metastasis. Cancers 2019, 11 (10):1490. doi: 10.3390/cancers11101490.
  • Simbulan-Rosenthal CM, Gaur A, Zhou H, et al. CD133 is associated with increased melanoma cell survival after multikinase inhibition. J Oncol. 2019;2019:e6486173. doi: 10.1155/2019/6486173.
  • El-Khattouti A, Sheehan NT, Monico J, et al. CD133+ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Letters. 2015;357(1):83–104. doi: 10.1016/j.canlet.2014.10.043.
  • El-Khattouti A, Selimovic D, Haïkel Y, et al. Identification and analysis of CD133+ melanoma stem-like cells conferring resistance to taxol: an insight into the mechanisms of their resistance and response. Cancer Lett. 2014;343(1):123–133. doi: 10.1016/j.canlet.2013.09.024.