306
Views
0
CrossRef citations to date
0
Altmetric
Research article

Effects of sintering parameters on the preparation and properties of foamed ceramics from cyanide tailings

, ORCID Icon, , , &
Pages 151-163 | Received 08 Dec 2023, Accepted 27 Feb 2024, Published online: 05 Mar 2024

References

  • Dong K, Xie F, Wang W, et al. The detoxification and utilization of cyanide tailings: a critical review. J Clean Prod. 2021;302:126946. doi: 10.1016/j.jclepro.2021.126946
  • Kyle JH, Breuer PL, Bunney KG, et al. Review of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, Te) and their deportment in gold processing: Part II: Deportment in gold ore processing by cyanidation. Hydrometallurgy. 2012;111-112:10–21. doi: 10.1016/j.hydromet.2011.09.005
  • Chen L, Li Q, Jiang T. Comprehensive utilization of tailings in quartz vein-hosted gold deposits. Minerals. 2022;12(12):1481. doi: 10.3390/min12121481
  • Barcelos DA, Pontes FVM, Da Silva FANG, et al. Gold mining tailing: environmental availability of metals and human health risk assessment. J Hazard Mater. 2020;397:122721. doi: 10.1016/j.jhazmat.2020.122721
  • Zhang Y, Li H, Yu X. Fe extraction from high-silicon and aluminum cyanide tailings by pretreatment of water leaching before magnetic separation. Trans Nonferrous Met Soc China. 2013;23(4):1165–1173. doi: 10.1016/S1003-6326(13)62579-0
  • Dai X, Simons A, Breuer P. A review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores. Miner Eng. 2012;25(1):1–13. doi: 10.1016/j.mineng.2011.10.002
  • Long H, Li H, Pei J, et al. Cleaner recovery of multiple valuable metals from cyanide tailings via chlorination roasting. Sep Sci Technol. 2021;56(12):2113–2123. doi: 10.1080/01496395.2020.1812650
  • Liu T, Lin C, Liu J, et al. Phase evolution, pore morphology and microstructure of glass ceramic foams derived from tailings wastes. Ceram Int. 2018;44(12):14393–14400. doi: 10.1016/j.ceramint.2018.05.049
  • Liu T, Lin C, Liu P, et al. Preparation and characterization of partially vitrified ceramic material. J Non-Cryst Solids. 2019;505:92–101. doi: 10.1016/j.jnoncrysol.2018.10.019
  • Dong K, Xie F, Wang W, et al. Calcination of calcium sulphoaluminate cement using pyrite-rich cyanide tailings. Crystals. 2020;10(11):971. doi: 10.3390/cryst10110971
  • Roy S, Adhikari GR, Gupta RN. Use of gold mill tailings in making bricks: a feasibility study. Waste Manage Res. 2007;25(5):475–482. doi: 10.1177/0734242X07076944
  • Mashifana T, Sithole T. Clean production of sustainable backfill material from waste gold tailings and slag. J Clean Prod. 2021;308:127357. doi: 10.1016/j.jclepro.2021.127357
  • Gcasamba SP, Ramasenya K, Ekolu S, et al. A laboratory investigation on the performance of South African acid producing gold mine tailings and its possible use in mine reclamation. J Environ Sci Health. 2019;54(13):1293–1301. doi: 10.1080/10934529.2019.1642694
  • Duan X, Meng F, Li Z, et al. Utilization of gold tailings for the construction of foamed ceramics used in external insulation buildings. Int J Appl Ceram Technol. 2022;19(4):2249–2258. doi: 10.1111/ijac.14018
  • Wei Z, Zhao J, Wang W, et al. Utilizing gold mine tailings to produce sintered bricks. Constr Build Mater. 2021;282:122655. doi: 10.1016/j.conbuildmat.2021.122655
  • Zhao B, Zhao L, Gao P, et al. Cyanide detoxification and iron mineral recycle of cyanide tailings by the sustainable utilization technology of oxidation-reduction roasting: process optimization and mechanism study. J Environ Chem Eng. 2023;11(3):109861. doi: 10.1016/j.jece.2023.109861
  • Fu P, Li Z, Feng J, et al. Recovery of gold and iron from cyanide tailings with a combined direct reduction roasting and leaching process. Metals. 2018;8(7):561. doi: 10.3390/met8070561
  • Hai L, Fang X, Zhao X, et al. Experimental analysis on cyanide removal of gold tailings under medium-temperature roasting. Sci Rep. 2023;13(1):3831. doi: 10.1038/s41598-023-28842-3
  • Li L, Sun W, Hu W, et al. Impact of natural and social environmental factors on building energy consumption: based on bibliometrics. J Build Eng. 2021;37:102136. doi: 10.1016/j.jobe.2020.102136
  • Hui T, Sun H, Peng T, et al. Recycling of extracted titanium slag and gold tailings for preparation of self-glazed ceramic foams. Ceram Int. 2022;48(16):23415–23427. doi: 10.1016/j.ceramint.2022.04.333
  • Ge X, Zhou M, Wang H, et al. Effects of flux components on the properties and pore structure of ceramic foams produced from coal bottom ash. Ceram Int. 2019;45(9):12528–12534. doi: 10.1016/j.ceramint.2019.03.190
  • Luo Y, Zheng S, Ma S, et al. Preparation of sintered foamed ceramics derived entirely from coal fly ash. Constr Build Mater. 2018;163:529–538. doi: 10.1016/j.conbuildmat.2017.12.102
  • Cengizler H, Koç M, O Ş. Production of ceramic glass foam of low thermal conductivity by a simple method entirely from fly ash. Ceram Int. 2021;47(20):28460–28470. doi: 10.1016/j.ceramint.2021.06.265
  • Wang H, Chen Z, Liu L, et al. Synthesis of a foam ceramic based on ceramic tile polishing waste using SiC as foaming agent. Ceram Int. 2018;44(9):10078–10086. doi: 10.1016/j.ceramint.2018.02.211
  • Xia F, Cui S, Pu X. Performance study of foam ceramics prepared by direct foaming method using red mud and K-feldspar washed waste. Ceram Int. 2022;48(4):5197–5203. doi: 10.1016/j.ceramint.2021.11.059
  • Chen X, Lu A, Qu G. Preparation and characterization of foam ceramics from red mud and fly ash using sodium silicate as foaming agent. Ceram Int. 2013;39(2):1923–1929. doi: 10.1016/j.ceramint.2012.08.042
  • Zhou W, Zhang Z, Li N, et al. The preparation of mullite foamed ceramics reinforced by in-situ SiC whiskers and their reinforcement mechanism. Ceram Int. 2022;48(10):14224–14230. doi: 10.1016/j.ceramint.2022.01.310
  • Martínez-Martínez S, Pérez-Villarejo L, Garzón E, et al. Influence of firing temperature on the ceramic properties of illite-chlorite-calcitic clays. Ceram Int. 2023;49(14):24541–24557. doi: 10.1016/j.ceramint.2022.11.077
  • Liang B, Zhang M, Li H, et al. Preparation of ceramic foams from ceramic tile polishing waste and fly ash without added foaming agent. Ceram Int. 2021;47(16):23338–23349. doi: 10.1016/j.ceramint.2021.05.047
  • Xiong H, Shui A, Shan Q, et al. The cause of foaming in polishing porcelain stoneware tile residues during sintering: interface corrosion of silicate-SiC. J Eur Ceram Soc. 2022;42(8):3660–3673. doi: 10.1016/j.jeurceramsoc.2022.02.060
  • Fu F, Hu N, Ye Y, et al. Production of lightweight foam ceramics by adjusting sintering time and heating rate. Constr Build Mater. 2023;394:132063. doi: 10.1016/j.conbuildmat.2023.132063
  • Wang J, Guo Q, Wei J, et al. Understanding the influence of iron on fluidity and crystallization characteristics of synthetic coal slags. Fuel Process Technol. 2020;209:106532. doi: 10.1016/j.fuproc.2020.106532
  • Zhang L, Song X, Wei J, et al. Simulation and experimental study on the effect of iron on the structure and flow properties of coal ash slag. Chem Eng Sci. 2023;273:118642. doi: 10.1016/j.ces.2023.118642
  • Dong Y, Guo W, Jiang C, et al. Using CaO as a modifier agent to optimize the pore structure of foamed ceramics from granite scrap. Ceram Int. 2023;49(9):13443–13451. doi: 10.1016/j.ceramint.2022.12.219