214
Views
0
CrossRef citations to date
0
Altmetric
Research Article

High porosity and low thermal conductivity lanthanum zirconate porous ceramics via replica method

, , , , , , & show all
Pages 172-183 | Received 20 Dec 2023, Accepted 14 Mar 2024, Published online: 20 Mar 2024

References

  • Ohji T, Fukushima M. Macro-porous ceramics: processing and properties. Int Mater Rev. 2012;57(2):115–131. doi: 10.1179/1743280411Y.0000000006
  • Huo WL, Zhang XY, Chen Y, et al. Mechanical strength of highly porous ceramic foams with thin and lamellate cell wall from particle-stabilized foams. Ceram Int. 2018;44(5):5780–5784. doi: 10.1016/j.ceramint.2017.11.202
  • Chen Y, Wang N, Ola O, et al. Porous ceramics: light in weight but heavy in energy and environment technologies. Mat Sci Eng R. 2021;143:100589. doi: 10.1016/j.mser.2020.100589
  • Studart AR, Gonzenbach UT, Tervoort E, et al. Processing routes to macroporous ceramics: a review. J Am Ceram Soc. 2006;89(6):1771–1789. doi: 10.1111/j.1551-2916.2006.01044.x
  • Huo CB, Tian XY, Nan Y, et al. Hierarchically porous alumina ceramic catalyst carrier prepared by powder bed fusion. J Eur Ceram Soc. (2022);40(12):4253–4264. doi: 10.1016/j.jeurceramsoc.2020.03.059
  • Colombo P, Bernardo E. Macro- and micro-cellular porous ceramics from preceramic polymers. Compos Sci Technol. (2003);63(16):2353–2359. doi: 10.1016/S0266-3538(03)00268-9
  • Huang J, Yao WX. High-temperature mechanical properties of strain isolation pad for thermal protection system. J Spacecraft Rockets. (2018);55(4), 848–855. doi: 10.2514/1.A34093
  • Minas C, Carnelli D, Tervoort E, et al. 3D printing of emulsions and foams into hierarchical porous ceramics. Adv Mater. 2016;28(45):9993–9999. doi: 10.1002/adma.201603390
  • Yang JF, Zhang GJ, Ohji T. Fabrication of Low-Shrinkage, Porous Silicon Nitride Ceramics by Addition of a Small Amount of Carbon. J Am Ceram Soc, 2011;84, 639–641. doi:10.1111/j.1151-2916.2001.tb00890.x.
  • Fukasawa T, Ando M, Ohji T, et al., Synthesis of Porous Ceramics with complex pore structure by freeze-dry processing. J Am Ceram Soc. (2001);84(1):230–232. doi: 10.1111/j.1151-2916.2001.tb00638.x
  • Han Y, Zhou LJ, Liang YX, et al. Fabrication and properties of silica/mullite porous ceramic by foam-gelcasting process using silicon kerf waste as raw material. Mater Chem Phys. 2020;240:122248. doi: 10.1016/j.matchemphys.2019.122248
  • Nor MAAM, Hong LC, Ahmad ZA, et al. Preparation and characterization of ceramic foam produced via polymeric foam replication method. J Mater Process Technol, 2008; 207(1–3): 235–239. doi: 10.1016/j.jmatprotec.2007.12.099
  • Gonzenbach UT, Studart AR, Tervoort E, et al. Macroporous ceramics from particle-stabilized wet foams. J Am Ceram Soc, 2007;90(1):16–22. doi: 10.1111/j.1551-2916.2006.01328.x
  • Schwartzwalder AVS, Method of making porous ceramic articles, US Patent 3,090,094 (May 21, 1963).
  • Lannge FF, Miller K, Open-cell, low-density ceramics fabricated from reticulated polymer substrates. Adv Ceram Mater, 1987; 2(4):827–831. doi: 10.1111/j.1551-2916.1987.tb00156.x
  • Brown DD, Green DJ, Am J. Investigation of Strut crack formation in open cell alumina Ceramics. J Am Ceram Soc, 1944; 77(6):1467–1472. doi: 10.1111/j.1151-2916.1994.tb09744.x
  • Brezny R, Green DJ, Am J. Fracture behavior of Open-Cell Ceramics. J Am Ceram Soc, 1989;72(7):1145–1152. doi: 10.1111/j.1151-2916.1989.tb09698.x
  • Ashby MF, Medalist RFM, The mechanical properties of cellular solids. Metall Mater Trans A, 1983; 14(9):1755–1769 doi: 10.1007/BF02645546
  • Rastogi VK, Jiang B, Sturzenegger PN, et al. A processing route for dip-coating and characterization of multi-structured ceramic foam. Ceram Int. 2019;45(17):21887–21893. doi: 10.1016/j.ceramint.2019.07.199
  • Chen F, Yang Y, Shen Q, et al. Macro/Micro structure dependence of mechanical strength of low temperature sintered silicon carbide ceramic foams. Ceram Int. 2012;38(6):5223–5229. doi: 10.1016/j.ceramint.2012.03.030
  • Liu DB, Shi BL, Geng LY, et al. High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings. J Adv Ceram, (2022) 11(6):961–973 doi: 10.1007/s40145-022-0589-z
  • Meng XY, Xu J, Zhu JT, et al. Hierarchically porous lanthanum zirconate foams with low thermal conductivity from particle-stabilized foams. J Am Ceram Soc, 2020; 103(11): 6088–6095. doi: 10.1111/jace.17341
  • Meng XY, Xu J, Zhu JT, et al., J Eur Ceram Soc, 41, 6010–6017 (2021). Enhancing the thermal insulating properties of lanthanum zirconate porous ceramics via pore structure tailoring (12). doi: 10.1016/j.jeurceramsoc.2021.05.032
  • Liang X, Li YW, Liu J, et al. Fabrication of SiC reticulated porous ceramics with multi-layered struts for porous media combustion. Ceram Int. 2016;42(11):13091–13097. doi: 10.1016/j.ceramint.2016.05.093
  • Appiagyei KA, Messing GL, Dumm JQ. Aqueous slip casting of transparent yttrium aluminum garnet (YAG) ceramics. Ceram Int. 2008;34(5):1309–1313. doi: 10.1016/j.ceramint.2007.03.010
  • Tseng WJ, Li SY, Rheology of colloidal BaTiO3 suspension with ammonium polyacrylate as a dispersant. Mater Sci Eng A, (2002);333(1–2):314–319. doi: 10.1016/S0921-5093(01)01856-1
  • Cooper PA, Hollyway PF, The shuttle tile story. Astro Aero, (1981);19:24–36 doi:10.2514/3.60100.
  • Frosch RA, Leiser DB, Goldstein HE, Fibrous refractory composite insulation. US Patent 4,148,962 (1979 April 10).
  • Dichiara RA, Method of making a permeable ceramic tile insulation. US Patent 6,613,255 (2002 Oct 17).
  • Guo LL, Tao X, Guo AR, et al. Coatings on rigid ceramic insulations:evolution and surface properties. Mater Rep, (2016);30:119–126. doi:10.11896/j.issn.1005-023X.2016.19.017.
  • Yang FY, Chen GB, Zhao S, et al. Preparation of high-strength porous mullite ceramics and the effect of hollow sphere particle size on microstructure and properties. Ceram Int, (2022); 48(13):19367–19374. doi: 10.1016/j.ceramint.2022.03.231
  • Yang Z, Yang FY, Zhao S, et al., In-situ growth of mullite whiskers and their effect on the microstructure and properties of porous mullite ceramics with an open/closed pore structure. J Eur Ceram Soc, (2021);41(16):299–308. doi: 10.1016/j.jeurceramsoc.2021.09.045
  • Gong LL, Wang YH, Cheng XD, et al. Thermal conductivity of highly porous mullite materials. Int J Heat Mass Transf. 2013;67:253–9. doi: 10.1016/j.ijheatmasstransfer.2013.08.008
  • Choo TF, Salleh MAM, Kok KY, et al., Modified cenospheres as non-sacrificial pore-forming agent for porous mullite ceramics. Ceram Int, (2019);45(17), 21827–21834. doi: 10.1016/j.ceramint.2019.07.189
  • Bucevac D, Maletaskic J, Omerasevic M, Porous acicular mullite ceramics fabricated with in situ formed soot oxidation catalyst obtained from waste MoSi2. Ceram Int, (2017). 43(13): 9815–9822 doi: 10.1016/j.ceramint.2017.04.161
  • Hu LF, Wang CA, Huang Y. Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. J Mater Sci. 2010;45(12):3242–3246. doi: 10.1007/s10853-010-4331-9
  • Li XX, Yan LW, Zhang YB, et al., Lightweight porous silica ceramics with ultra-low thermal conductivity and enhanced compressive strength. Ceram Int, (2022;48(7): 9788–9796 doi: 10.1016/j.ceramint.2021.12.180
  • Ren YH, Zhang B, Ye J, et al. Preparation of porous Y2SiO5 ceramics with high porosity and extremely low thermal conductivity for radome applications. Ceram Int. 2023;49(2):2394–2400. doi: 10.1016/j.ceramint.2022.09.212
  • Wu Z, Sun LC, Wang JY. Synthesis and characterization of porous Y 2 SiO 5 with low linear shrinkage, high porosity and high strength. Ceram Int. 2016;42(13):14894–14902. doi: 10.1016/j.ceramint.2016.06.128
  • Wu Z, Sun LC, Wan P, et al. Preparation, microstructure and high temperature performances of porous γ-Y2Si2O7 by in situ foam-gelcasting using gelatin. Ceram Int. 2015;41(10):14230–14238. doi: 10.1016/j.ceramint.2015.07.051
  • Meng XY, Xu J, Yang RW, et al., Lanthanum zirconate porous ceramics with controllable secondary pores for high-temperature thermal insulation. Ceram Int, 2022;48(22):33976–33983 doi: 10.1016/j.ceramint.2022.07.347
  • Lang Y, Dong YH, Zhou J, et al. YSZ fiber-reinforced porous YSZ ceramics with lowered thermal conductivity: influence of the sintering temperature. Mater Sci Eng A. 2014;600:76–81. doi: 10.1016/j.msea.2014.02.005
  • Liu JJ, Lin YB, Li YW, et al., Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent. Ceram Int, 2016;42(7):8221–8228 doi: 10.1016/j.ceramint.2016.02.032
  • Lo YW, Wei WCJ, Hsueh CH. Low thermal conductivity of porous Al2O3 foams for SOFC insulation. Mater Chem Phys. 2011;129(1–2):326–330. doi: 10.1016/j.matchemphys.2011.04.023
  • Huang Y, Hu NY, Ye YC, et al. Preparation and pore-forming mechanism of MgO–Al2O3–CaO-based porous ceramics using phosphorus tailings. Ceram Int. 2022;48(20):29882–29891. doi: 10.1016/j.ceramint.2022.06.253
  • Rajpoot S, Malik RMYW, Kim Y-W. Low thermal conductivity in porous SiC–SiO2–Al2O3–TiO2 ceramics induced by multiphase thermal resistance. Ceram Int. 2021;47(14):20161–20168. doi: 10.1016/j.ceramint.2021.04.022
  • Luo X, Zhang Q, Ye F, et al. Microstructure, mechanical, wave-transparent and heat insulation properties of Si3N4 foam ceramic by organic foam impregnation combined with CVI. J Mater Res Technol, 2023;23: 1332–1346 doi: 10.1016/j.jmrt.2023.01.072