144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating the ultralow dielectric loss of spinel-like and modified orthorhombic perovskite ceramic structures for microwave applications

, , , , , & show all
Pages 194-202 | Received 12 Jan 2024, Accepted 09 Apr 2024, Published online: 18 Apr 2024

References

  • Park K, Seong JK, Kwon Y, et al. Influence of SnO2 addition on the thermoelectric properties of Zn1−xSnxO (0.01≤x≤0.05). Mater Res Bull. 2008;43(1):54–61. doi: 10.1016/j.materresbull.2007.02.018
  • Ge NN, Liu CM, Cheng Y, et al. First-principles calculations for elastic and electronic properties of ZnSnO3 under pressure. Physica B. 2011;406(4):742–748. doi: 10.1016/j.physb.2010.11.046
  • Li B, Luo L, Xiao T, et al. Zn2SnO4–SnO2 heterojunction nanocomposites for dye-sensitized solar cells. J Alloys Comp. 2011;509(5):2186–2191. doi: 10.1016/j.jallcom.2010.10.184
  • Wang C, Xu B. Synthesis and optical absorption property of the Zn2TixSn1−xO4 (0≤x≤1) solid solutions. J Solid State Chem. 2004;177(10):3448–3453. doi: 10.1016/j.jssc.2004.05.024
  • Kim HT, Kim Y, Valant M, et al. Titanium incorporation in Zn2TiO4 spinel ceramics. J Am Ceram Soc. 2001;84(5):1081–1086. doi: 10.1111/j.1151-2916.2001.tb00793.x
  • Pal N, Paul M, Bhaumik A. New mesoporous perovskite ZnTiO3 and its excellent catalytic activity in liquid phase organic transformations. Appl Catal A Gen. 2011;393(1–2):153–160. doi: 10.1016/j.apcata.2010.11.037
  • Chang YS, Chang YH, Chen IG, et al. Synthesis and characterization of zinc titanate doped with magnesium. Solid State Commun. 2003;128(5):203–208. doi: 10.1016/S0038-1098(03)00527-1
  • Chaouchi A, Marinel S, Aliouat M, et al. Low temperature sintering of ZnTiO3/TiO2 based dielectric with controlled temperature coeffificient. J Eur Ceram Soc. 2007;27(7):2561–2566. doi: 10.1016/j.jeurceramsoc.2006.09.015
  • Wang D, Li L, Du M. Ultra-low dielectric loss lithium-based, temperature stable microwave dielectric ceramics. Ceram Int. 2022 Jan;48(1):1394–1401. doi: 10.1016/j.ceramint.2021.09.225
  • Cai C, Ma J, Xie J, et al. A novel Li3Mg3NbO7 microwave dielectric ceramic with ultra-low loss. Ceram Int. 2023 Aug 1;49(15):25495–25503. doi: 10.1016/j.ceramint.2023.05.090
  • Zaman A, Uddin S, Mehboob N, et al. Structural investigation and improvement of microwave dielectric properties in Ca(HfxTi1-x)O3 ceramics. Phys Scr. 2021 Feb;96(2):025701. doi: 10.1088/1402-4896/abce74
  • Goud JP, Kumar A, Alkathy MS, et al. Thickness dependence of microwave dielectric tunability in Ba0.5Sr0.5TiO3 thin films deposited by pulsed laser deposition. Ceram Int. 2023 Jan 1;49(1):1188–1194. doi: 10.1016/j.ceramint.2022.09.095
  • Guo H-H, Zhou D, Du C, et al. Temperature stable Li2Ti0.75(Mg1/3Nb2/3)0.25O3-based microwave dielectric ceramics with low sintering temperature and ultra-low dielectric loss for dielectric resonator antenna applications. J Mater Chem. 2020;8(14):4690–4700. doi: 10.1039/D0TC00326C
  • Belous A, Ovchar O, Durilin D, et al. High-Q microwave dielectric materials based on the spinel Mg2TiO 4. J Am Ceram Soc. 2006;89(11):3441–3445. doi: 10.1111/j.1551-2916.2006.01271.x
  • Huang CL, Chen JY. High‐Q microwave dielectrics in the (Mg1−xCox)2TiO4 ceramics. J Am Ceram Soc. 2009;92:379–383.
  • Hsu C-H, Chang C-H. Microwave dielectric properties of (Ca0.8Sr0.2)(SnxTi1−x)O3 ceramics. Mater Sci Eng B. 2013;178:354–357.
  • Hakki BW, Coleman PD. A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans Microw Theory Tech. 1960;8(4):402–410. doi: 10.1109/TMTT.1960.1124749
  • Courtney WE. Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans Microw Theory Tech. 1970;18(8):476–485. doi: 10.1109/TMTT.1970.1127271
  • Liu XC. Synthesis, phase structure and dielectric property of the ZnO–MgO– SnO2 ceramics. J Alloys Comp. 2013;558:131–135. doi: 10.1016/j.jallcom.2013.01.021