3,629
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Increasing prevalence of hypervirulent ST5 methicillin susceptible Staphylococcus aureus subtype poses a serious clinical threat

, , , , , , & show all
Pages 109-122 | Received 09 Sep 2020, Accepted 21 Dec 2020, Published online: 17 Jan 2021

References

  • Turner NA, Sharma-Kuinkel BK, Maskarinec SA, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019 Apr;17(4):203–218.
  • Aires-de-Sousa M. Methicillin-resistant Staphylococcus aureus among animals: current overview. Clin Microbiol Infect. 2017 Jun;23(6):373–380.
  • Tong SY, Davis JS, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015 Jul;28(3):603–661.
  • Jevons MP, Coe AW, Parker MT. Methicillin resistance in staphylococci. Lancet. 1963 Apr 27;1(7287):904–907.
  • Lee AS, de Lencastre H, Garau J, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018 May 31;4:18033.
  • Planet PJ, Diaz L, Kolokotronis SO, et al. Parallel epidemics of community-associated methicillin-resistant Staphylococcus aureus USA300 infection in North and South America. J Infect Dis. 2015 Dec 15;212(12):1874–1882.
  • Chen CJ, Huang YC. New epidemiology of Staphylococcus aureus infection in Asia. Clin Microbiol Infect. 2014 Jul;20(7):605–623.
  • National Nosocomial Infections Surveillance (NNIS). System report, data summary from January 1992 through June 2003, issued August 2003. Am J Infect Control. 2003 Dec;31(8):481–498.
  • Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018 Oct;31(4).
  • Hu F, Wang M, Zhu D, et al. CHINET efforts to control antimicrobial resistance in China. J Glob Antimicrob Resist. 2020 Jun;21:76–77.
  • Enright MC, Day NP, Davies CE, et al. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000 Mar;38(3):1008–1015.
  • Perkins DR, Hall JA, Lopez LM, et al. Disseminated methicillin-susceptible Staphylococcus aureus infection. J Med Microbiol. 2018 Jan;67(1):83–86.
  • Bouiller K, Gbaguidi-Haore H, Hocquet D, et al. Clonal complex 398 methicillin-susceptible Staphylococcus aureus bloodstream infections are associated with high mortality. Clin Microbiol Infect. 2016 May;22(5):451–455.
  • Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998 Aug 20;339(8):520–532.
  • Thammavongsa V, Kim HK, Missiakas D, et al. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol. 2015 Sep;13(9):529–543.
  • Foster TJ, Geoghegan JA, Ganesh VK, et al. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014 Jan;12(1):49–62.
  • Kong C, Neoh HM, Nathan S. Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins. 2016 Mar 15;8(3):72.
  • Aanensen DM, Spratt BG. The multilocus sequence typing network: mlst.net. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W728–W733.
  • Dai Y, Liu J, Guo W, et al. Decreasing methicillin-resistant Staphylococcus aureus (MRSA) infections is attributable to the disappearance of predominant MRSA ST239 clones, Shanghai, 2008–2017. Emerg Microbes Infect. 2019;8(1):471–478.
  • Jian Y, Lv H, Liu J, et al. Dynamic changes of Staphylococcus aureus susceptibility to vancomycin, teicoplanin, and linezolid in a central teaching hospital in Shanghai, China, 2008–2018. Front Microbiol. 2020;11:908.
  • Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA. 1998 Mar 17;95(6):3140–3145.
  • Koreen L, Ramaswamy SV, Graviss EA, et al. Spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol. 2004 Feb;42(2):792–799.
  • Letunic I, Bork P. Interactive tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019 Jul 2;47(W1):W256–w259.
  • Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012 Nov;67(11):2640–2644.
  • Liu B, Zheng D, Jin Q, et al. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019 Jan 8;47(D1):D687–d692.
  • van Wamel WJ, Rooijakkers SH, Ruyken M, et al. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol. 2006 Feb;188(4):1310–1315.
  • Verkaik NJ, Benard M, Boelens HA, et al. Immune evasion cluster-positive bacteriophages are highly prevalent among human Staphylococcus aureus strains, but they are not essential in the first stages of nasal colonization. Clin Microbiol Infect. 2011 Mar;17(3):343–348.
  • Projan SJ, Kornblum J, Kreiswirth B, et al. Nucleotide sequence: the beta-hemolysin gene of Staphylococcus aureus. Nucleic Acids Res. 1989 Apr 25;17(8):3305.
  • Larsen MV, Cosentino S, Rasmussen S, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012 Apr;50(4):1355–1361.
  • Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009 Dec 15;10:421.
  • International Working Group on the Classification of Staphylococcal Cassette Chromosome E. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother. 2009 Dec;53(12):4961–4967.
  • Monecke S, Jatzwauk L, Muller E, et al. Diversity of SCCmec elements in Staphylococcus aureus as observed in South-Eastern Germany. PLoS One. 2016;11(9):e0162654.
  • Arndt D, Grant JR, Marcu A, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016 Jul 8;44(W1):W16–W21.
  • Zhou Y, Liang Y, Lynch KH, et al. PHAST: a fast phage search tool. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W347–W352.
  • CLSI. Performance standards for antimicrobial susceptibility testing. 29th ed. CLSI supplement document M100. Wayne (PA): Clinical and Laboratory Standards Institute; 2019.
  • Liu Y, Liu Y, Du Z, et al. Skin microbiota analysis-inspired development of novel anti-infectives. Microbiome. 2020;8(1).
  • Vuong C, Gerke C, Somerville GA, et al. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis. 2003 Sep 1;188(5):706–718.
  • He L, Zheng HX, Wang Y, et al. Detection and analysis of methicillin-resistant human-adapted sequence type 398 allows insight into community-associated methicillin-resistant Staphylococcus aureus evolution. Genome Med. 2018 Jan 29;10(1):5.
  • Wang Y, Liu Q, Liu Q, et al. Phylogenetic analysis and virulence determinant of the host-adapted Staphylococcus aureus lineage ST188 in China. Emerg Microbes Infect. 2018 Mar 29;7(1):45.
  • Steinig EJ, Duchene S, Robinson DA, et al. Evolution and global transmission of a multidrug-resistant, community-associated methicillin-resistant Staphylococcus aureus lineage from the Indian subcontinent. mBio. 2019;10(6):e01105-19.
  • Xiao Y. Regulations for clinical application of antibacterial agents – A guiding principle for the administration of antibacterial agents in medical Institutions. China Licensed Pharmacist. 2012(6):10–15.
  • Strauss L, Stegger M, Akpaka PE, et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. Proc Natl Acad Sci USA. 2017 Dec 5;114(49):E10596–e10604.
  • Ward MJ, Goncheva M, Richardson E, et al. Identification of source and sink populations for the emergence and global spread of the East-Asia clone of community-associated MRSA. Genome Biol. 2016 Jul 26;17(1):160.
  • Bae T, Baba T, Hiramatsu K, et al. Prophages of Staphylococcus aureus Newman and their contribution to virulence. Mol Microbiol. 2006 Nov;62(4):1035–1047.
  • Hallin M, De Mendonça R, Denis O, et al. Diversity of accessory genome of human and livestock-associated ST398 methicillin resistant Staphylococcus aureus strains. Infect Genet Evol. 2011 Mar;11(2):290–299.
  • Bokarewa MI, Jin T, Tarkowski A. Staphylococcus aureus: staphylokinase. Int J Biochem Cell Biol. 2006;38(4):504–509.
  • Kwiecinski J, Jacobsson G, Karlsson M, et al. Staphylokinase promotes the establishment of Staphylococcus aureus skin infections while decreasing disease severity. J Infect Dis. 2013 Sep;208(6):990–999.
  • Peetermans M, Vanassche T, Liesenborghs L, et al. Plasminogen activation by staphylokinase enhances local spreading of S. aureus in skin infections. BMC Microbiol. 2014 Dec 17;14:310.
  • Kwiecinski J, Peetermans M, Liesenborghs L, et al. Staphylokinase control of Staphylococcus aureus biofilm formation and detachment Through host plasminogen activation. J Infect Dis. 2016 Jan 1;213(1):139–148.
  • Abrahmsén L, Dohlsten M, Segrén S, et al. Characterization of two distinct MHC class II binding sites in the superantigen staphylococcal enterotoxin A. EMBO J. 1995 Jul 3;14(13):2978–2986.
  • Postma B, Kleibeuker W, Poppelier MJ, et al. Residues 10–18 within the C5a receptor N terminus compose a binding domain for chemotaxis inhibitory protein of Staphylococcus aureus. J Biol Chem. 2005 Jan 21;280(3):2020–2027.
  • Postma B, Poppelier MJ, van Galen JC, et al. Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J Immunol. 2004 Jun 1;172(11):6994–7001.
  • Rooijakkers SH, Ruyken M, van Roon J, et al. Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell Microbiol. 2006 Aug;8(8):1282–1293.
  • Nielsen KL, Pedersen TM, Udekwu KI, et al. Fitness cost: a bacteriological explanation for the demise of the first international methicillin-resistant Staphylococcus aureus epidemic. J Antimicrob Chemother. 2012 Jun;67(6):1325–1332.
  • Foucault ML, Courvalin P, Grillot-Courvalin C. Fitness cost of VanA-type vancomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009 Jun;53(6):2354–2359.
  • Maher MC, Alemayehu W, Lakew T, et al. The fitness cost of antibiotic resistance in Streptococcus pneumoniae: insight from the field. PLoS One. 2012;7(1):e29407.
  • Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discovery. 2010 Feb;9(2):117–128.