3,043
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Oligonucleotide-capped nanoporous anodic alumina biosensor as diagnostic tool for rapid and accurate detection of Candida auris in clinical samples

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 407-415 | Received 21 Jul 2020, Accepted 24 Dec 2020, Published online: 11 Mar 2021

References

  • Satoh K, Makimura K, Hasumi Y, et al. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53:41–44.
  • Ruiz Gaitán AC, Moret A, López Hontangas JL, et al. Nosocomial fungemia by Candida auris: first four reported cases in continental Europe. Rev Iberoam de Micol. 2017;34:23–27.
  • Yamamoto M, Alshahni MM, Tamura T, et al. Rapid detection of Candida auris based on loop-mediated isothermal amplification (LAMP). J Clin Microbiol. 2018;56:e00591-18.
  • Kathuria S, Singh PK, Sharma C, et al. Multidrug-resistant Candida auris misidentified as Candida haemulonii: Characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by vitek 2, CLSI broth microdilution, and etest method. J Clin Microbiol. 2015;53:1823–1830.
  • Schelenz S, Hagen F, Rhodes JL, et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist In. 2016;5(1):35.
  • Leach L, Zhu Y, Chaturvedi S. Development and validation of a real-time PCR assay for rapid detection of Candida auris from surveillance samples. J Clin Microbiol. 2018;56(2):e01223-17.
  • Vigneshvar S, Sudhakumari CC, Senthilkumaran B, et al. Recent advances in biosensor technology for potential applications – an overview. Front Bioeng Biotechnol. 2016;4:11.
  • Girigoswami K, Akhtar N. Nanobiosensors and fluorescence based biosensors: an overview. Int J Nano Dimens. 2019;10(1):1–17.
  • Pla L, Lozano-Torres B, Martínez-Máñez R, et al. Overview of the evolution of silica-based chromo-fluorogenic nanosensors. Sensors. 2019;19:5138.
  • Giménez C, De La Torre C, Gorbe M, et al. Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells. Langmuir. 2015;31:3753–3762.
  • Baranowska M, Slota AJ, Eravuchira PJ, et al. Protein attachment to nanoporous anodic alumina for biotechnological applications: influence of pore size, protein size and functionalization path. Colloid Surface B. 2014;122:375–383.
  • Aznar E, Oroval M, Pascual L, et al. Gated materials for on-command release of guest molecules. Chem Rev. 2016;116:561–718.
  • García-Fernández A, Aznar E, Martínez-Máñez R, et al. New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers. Small. 2020;16:1902242.
  • Sancenón F, Pascual L, Oroval M, et al. Gated silica mesoporous materials in sensing applications. ChemistryOpen. 2015;4:418–437.
  • Castillo RR, Baeza A, Vallet-Regí M. Recent applications of the combination of mesoporous silica nanoparticles with nucleic acids: development of bioresponsive devices, carriers and sensors. Biomater Sci. 2017;5:353–377.
  • Tasbasi BB, Guner BC, Sudagidan M, et al. Label-free lateral flow assay for Listeria monocytogenes by aptamer-gated release of signal molecules. Anal Biochem. 2019;587:113449.
  • Ribes À, Santiago-Felipe S, Aviñó A, et al. Design of oligonucleotide-capped mesoporous silica nanoparticles for the detection of miRNA-145 by duplex and triplex formation. Sensor Actuat B-Chem. 2018;277:598–603.
  • Ribes À, Xifré-Pérez E, Aznar E, et al. Molecular gated nanoporous anodic alumina for the detection of cocaine. Sci Rep. 2016;6:1–9.
  • Bayramoglu G, Ozalp VC, Dincbal U, et al. Fast and sensitive detection of salmonella in milk samples using aptamer-functionalized magnetic silica solid phase and MCM-41-aptamer gate system. ACS Biomater Sci Eng. 2018;4:1437–1444.
  • Ucak S, Sudagidan M, Borsa BA, et al. Inhibitory effects of aptamer targeted teicoplanin encapsulated PLGA nanoparticles for Staphylococcus aureus strains. World J Microb Biot. 2020;36:1–9.
  • Climent E, Mondragón L, Martínez-Máñez R, et al. Selective, highly sensitive, and rapid detection of genomic DNA by using gated materials: Mycoplasma detection. Angew Chem Int Ed. 2013;52:8938–8942.
  • Ribes À, Aznar E, Santiago-Felipe S, et al. Selective and sensitive probe based in oligonucleotide-capped nanoporous alumina for the rapid screening of infection produced by Candida albicans. ACS Sensors. 2019;4:1291–1298.
  • Ruiz-Gaitán AC, Fernández-Pereira J, Valentin E, et al. Molecular identification of Candida auris by PCR amplification of species-specific GPI protein-encoding genes. Int J Med Microbiol Suppl. 2018;308:812–818.
  • Pascual L, Baroja I, Aznar E, et al. Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chem Commun. 2015;51:1414–1416.
  • Ahmad A, Spencer JE, Lockhart SR, et al. A high-throughput and rapid method for accurate identification of emerging multidrug-resistant Candida auris. Mycoses. 2019;62:513–518.
  • Sexton DJ, Bentz ML, Welsh RM, et al. Evaluation of a new T2 magnetic resonance assay for rapid detection of emergent fungal pathogen Candida auris on clinical skin swab samples. Mycoses. 2018;61:786–790.
  • Lacroix C, Gicquel A, Sendid B, et al. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for the identification of Candida species. Clin Microbiol Infec. 2014;20:153–158.
  • Zurl C, Prattes J, Zollner-Schwetz I, et al. T2 Candida magnetic resonance in patients with invasive candidiasis: strengths and limitations. Med Mycol. 2020;58(5):632–638.
  • Mahmoudi S, Agha Kuchak Afshari S, Aghaei Gharehbolagh S, et al. Methods for identification of Candida auris, the yeast of global public health concern: a review. J Mycol Med. 2019;29:174–179.
  • Pla L, Santiago-Felipe S, Tormo-Más MÁ, et al. Aptamer-capped nanoporous anodic alumina for Staphylococcus aureus detection. Sensor Actuat B-Chem. 2020;128281.
  • Chowdhary A, Sharma C, Duggal S, et al. New clonal strain of Candida auris, Delhi, India. Emerg Infect Dis. 2013;19:1670–1673.
  • Prakash A, Sharma C, Singh A, et al. Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism. Clin Microbiol Infec. 2016;22:277.e1–277.e9.
  • Chowdhary A, Anil Kumar V, Sharma C, et al. Multidrug-resistant endemic clonal strain of Candida auris in India. Eur J Clin Microbiol Infect Dis. 2014;33:919–926.
  • Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64:134–174.
  • Rhodes J, Abdolrasouli A, Farrer RA, et al. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris article. Emerg Microbes Infect. 2018;7:1–12.
  • Arendrup MC, Prakash A, Meletiadis J, et al. Comparison of EUCAST and CLSI reference microdilution mics of eight antifungal compounds for Candida auris and associated tentative epidemiological cutoff values. Antimicrob Agents Chemother. 2017;61(6):e00485-17.
  • Spivak ES, Hanson KE. Candida auris: an emerging fungal pathogen. J Clin Microbiol. 2018;56(2):e01588-17.
  • Madisen L, Hoar DI, Holroyd CD, et al. The effects of storage of blood and isolated DNA on the integrity of DNA. Am J Med Genet A. 1987;27:379–390.