3,687
Views
10
CrossRef citations to date
0
Altmetric
Research Article

ATP2, The essential P4-ATPase of malaria parasites, catalyzes lipid-stimulated ATP hydrolysis in complex with a Cdc50 β-subunit

, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 132-147 | Received 19 Oct 2020, Accepted 24 Dec 2020, Published online: 17 Jan 2021

References

  • World malaria report. 2019th ed. Geneva, 2019.
  • Gosling R, von Seidlein L. The future of the RTS,S/AS01 malaria vaccine: an alternative development plan. PLoS Med. 2016;13:e1001994.
  • Burrows JN, Duparc S, Gutteridge WE, et al. New developments in anti-malarial target candidate and product profiles. Malar J. 2017;16:26.
  • Kenthirapalan S, Waters AP, Matuschewski K, et al. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite. Nat Commun. 2016;7:10519.
  • Bushell E, Gomes AR, Sanderson T, et al. Functional profiling of a plasmodium genome reveals an abundance of essential Genes. Cell. 2017;170:260–272.e8.
  • Zhang M, Wang C, Otto TD, et al. Uncovering the essential genes of the human malaria parasite plasmodium falciparum by saturation mutagenesis. Science. 2018;360:eaap7847.
  • Martin RE. The transportome of the malaria parasite. Biol Rev. 2020;95:305–332.
  • Weiner J, Kooij T. Phylogenetic profiles of all membrane transport proteins of the malaria parasite highlight new drug targets. Microb Cell. 2016;3:511–521.
  • Palmgren MG, Nissen P. P-Type ATPases. Annu Rev Biophys. 2011;40:243–266.
  • Andersen JP, Vestergaard AL, Mikkelsen SA, et al. P4-ATPases as phospholipid flippases—structure, function, and enigmas. Front Physiol. 2016;7. Article no. 275.
  • van Veen S, Martin S, Van den Haute C, et al. ATP13A2 deficiency disrupts lysosomal polyamine export. Nature. 2020;578:419–424.
  • McKenna MJ, Sim SI, Ordureau A, et al. The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase. Science. 2020;369:eabc5809.
  • Kirk K. Ion regulation in the malaria parasite. Annu Rev Microbiol. 2015;69:341–359.
  • Jiménez-Díaz MB, Ebert D, Salinas Y, et al. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of plasmodium. Proc Natl Acad Sci U S A. 2014;111:E5455–E5462.
  • Eckstein-Ludwig U, Webb RJ, van Goethem IDA, et al. Artemisinins target the SERCA of plasmodium falciparum. Nature. 2003;424:957–961.
  • Cardi D, Pozza A, Arnou B, et al. Purified E255L mutant SERCA1a and purified PfATP6 are sensitive to SERCA-type inhibitors but insensitive to artemisinins. J Biol Chem. 2010;285:26406–26416.
  • Paulusma CC, Elferink RPJO. P4 ATPases–the physiological relevance of lipid flipping transporters. FEBS Lett. 2010;584:2708–2716.
  • Poulsen LR, López-Marqués RL, Pedas PR, et al. A phospholipid uptake system in the model plant arabidopsis thaliana. Nat Commun. 2015;6. Article no. 7649.
  • Huang W, Liao G, Baker GM, et al. Lipid flippase subunit Cdc50 mediates drug resistance and virulence in Cryptococcus neoformans. MBio. 2016;7:e00478.
  • Cowell AN, Istvan ES, Lukens AK, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359:191–199.
  • Paulusma CC, Folmer DE, Ho-Mok KS, et al. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology. 2008;47:268–278.
  • Bryde S, Hennrich H, Verhulst PM, et al. CDC50 proteins are critical components of the human class-1 P 4-ATPase transport machinery. J Biol Chem. 2010;285:40562–40572.
  • Timcenko M, Lyons JA, Januliene D, et al. Structure and autoregulation of a P4-ATPase lipid flippase. Nature. 2019;571:366–370.
  • Hiraizumi M, Yamashita K, Nishizawa T, et al. Cryo-EM structures capture the transport cycle of the P4-ATPase flippase. Science. 2019;365:1149–1155.
  • Bai L, Kovach A, You Q, et al. Autoinhibition and activation mechanisms of the eukaryotic lipid flippase Drs2p-Cdc50p. Nat Commun. 2019;10. doi:https://doi.org/10.1038/s41467-019-12191-9.
  • He Y, Xu J, Wu X, et al. Structures of a P4-ATPase lipid flippase in lipid bilayers. Protein Cell. 2020;11:458–463.
  • Nakanishi H, Irie K, Segawa K, et al. Crystal structure of a human plasma membrane phospholipid flippase. J Biol Chem. 2020;295:10180–10194.
  • Nakanishi H, Nishizawa T, Segawa K, et al. Transport cycle of plasma membrane flippase ATP11C by cryo-EM. Cell Rep. 2020;32:108208.
  • Gao H, Yang Z, Wang X, et al. ISP1-anchored polarization of GCβ/CDC50A complex Initiates malaria Ookinete gliding motility. Curr Biol. 2018;28:2763–2776.e6.
  • Bisio H, Lunghi M, Brochet M, et al. Phosphatidic acid governs natural egress in Toxoplasma gondii via a guanylate cyclase receptor platform. Nat. Microbiol. 2019;4:420–428.
  • Azouaoui H, Montigny C, Ash M-R, et al. A high-yield co-expression system for the purification of an intact Drs2p-Cdc50p lipid flippase complex, critically dependent on and stabilized by phosphatidylinositol-4-phosphate. PLoS One. 2014;9:e112176.
  • Lenoir G, Menguy T, Corre F, et al. Overproduction in yeast and rapid and efficient purification of the rabbit SERCA1a Ca2+-ATPase. Biochim Biophys Acta - Biomembr. 2002;1560:67–83.
  • Kubala MH, Kovtun O, Alexandrov K, et al. Structural and thermodynamic analysis of the GFP:GFP-nanobody complex. Protein Sci. 2010;19:2389–2401.
  • Tsirigos KD, Peters C, Shu N, et al. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 2015;43:W401–W407.
  • Katoh K, Misawa K, Kuma K-I, et al. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066.
  • Fiser A, Šali A. MODELLER: generation and refinement of homology-based protein structure models. Methods Enzymol. 2003;374:461–491.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612.
  • Feller SE, MacKerell AD. An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B. 2000;104:7510–7515.
  • Costa SR, Marek M, Axelsen KB, et al. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase. Biochem J. 2016;473:1605–1615.
  • Jidenko M, Lenoir G, Fuentes JM, et al. Expression in yeast and purification of a membrane protein, SERCA1a, using a biotinylated acceptor domain. Protein Expr Purif. 2006;48:32–42.
  • Rodríguez-Banqueri A, Errasti-Murugarren E, Bartoccioni P, et al. Stabilization of a prokaryotic LAT transporter by random mutagenesis. J Gen Physiol. 2016;147:353–368.
  • García-Sánchez S, Sánchez-Cañete MP, Gamarro F, et al. Functional role of evolutionarily highly conserved residues, N-glycosylation level and domains of the Leishmania miltefosine transporter-Cdc50 subunit. Biochem J. 2014;459:83–94.
  • Coleman JA, Kwok MCM, Molday RS. Localization, purification, and functional reconstitution of the P4-ATPase Atp8a2, a phosphatidylserine flippase in photoreceptor disc membranes. J Biol Chem. 2009;284:32670–32679.
  • Jacquot A, Montigny C, Hennrich H, et al. Phosphatidylserine stimulation of Drs2p·Cdc50p lipid translocase dephosphorylation is controlled by phosphatidylinositol-4-phosphate. J Biol Chem. 2012;287:13249–13261.
  • Azouaoui H, Montigny C, Dieudonné T, et al. High phosphatidylinositol 4-phosphate (PI4P)-dependent ATPase activity for the Drs2p-Cdc50p flippase after removal of its N- and C-terminal extensions. J Biol Chem. 2017;292:7954–7970.
  • Gulati S, Ekland EH, Ruggles KV, et al. Profiling the essential Nature of lipid Metabolism in asexual blood and Gametocyte stages of Plasmodium falciparum. Cell Host Microbe. 2015;18:371–381.
  • Juge N, Moriyama S, Miyaji T, et al. Plasmodium falciparum chloroquine resistance transporter is a H+ -coupled polyspecific nutrient and drug exporter. Proc Natl Acad Sci U S A. 2015;112:3356–3361.
  • David-Bosne S, Florent I, Lund-Winther A-M, et al. Antimalarial screening via large-scale purification of Plasmodium falciparum Ca2+-ATPase 6 and in vitro studies. FEBS J. 2013;280:5419–5429.
  • Qureshi AA, Suades A, Matsuoka R, et al. The molecular basis for sugar import in malaria parasites. Nature. 2020;578:321–325.
  • Kim J, Tan YZ, Wicht KJ, et al. Structure and drug resistance of the plasmodium falciparum transporter PfCRT. Nature. 2019;576:315–320.
  • Arnou B, Montigny C, Morth JP, et al. The plasmodium falciparum Ca(2+)-ATPase PfATP6: insensitive to artemisinin, but a potential drug target. Biochem Soc Trans. 2011;39:823–831.
  • Fujita H, Kida Y, Hagiwara M, et al. Positive charges of translocating polypeptide chain retrieve an upstream marginal hydrophobic segment from the endoplasmic reticulum lumen to the translocon. Mol Biol Cell. 2010;21:2045–2056.
  • Tone T, Nakayama K, Takatsu H, et al. ATPase reaction cycle of P4-ATPases affects their transport from the endoplasmic reticulum. FEBS Lett. 2020;594:412–423.
  • Molbaek K, Tejada M, Ricke CH, et al. Purification and initial characterization of Plasmodium falciparum K + channels, PfKch1 and PfKch2 produced in Saccharomyces cerevisiae. Microb Cell Fact. 2020;19. doi:https://doi.org/10.1186/s12934-020-01437-7.
  • Coleman JA, Molday RS. Critical role of the β-subunit CDC50A in the stable expression, Assembly, Subcellular localization, and lipid transport activity of the P 4 -ATPase ATP8A2. J Biol Chem. 2011;286:17205–17216.
  • McNamara CW, Lee MCS, Lim CS, et al. Targeting plasmodium PI(4)K to eliminate malaria. Nature. 2013;504:248–253.
  • Ebrahimzadeh Z, Mukherjee A, Richard D. A map of the subcellular distribution of phosphoinositides in the erythrocytic cycle of the malaria parasite Plasmodium falciparum. Int J Parasitol. 2018;48:13–25.