5,054
Views
23
CrossRef citations to date
0
Altmetric
Coronaviruses

Characterization of SARS-CoV-2 ORF6 deletion variants detected in a nosocomial cluster during routine genomic surveillance, Lyon, France

ORCID Icon, , , , , , , , , , , & show all
Pages 167-177 | Received 15 Sep 2020, Accepted 30 Dec 2020, Published online: 27 Jan 2021

References

  • Guo G, Ye L, Pan K, et al. New insights of emerging SARS-CoV-2: epidemiology, etiology, clinical features, clinical treatment, and prevention. Front Cell Dev Biol. 2020;8 :Art. no. 410.
  • Srivastava N, Baxi P, Ratho RK, et al. Global trends in epidemiology of coronavirus disease 2019 (COVID-19). Coronavirus Dis 2019 COVID-19. 2020: 9–21.
  • Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25: 23–30.
  • Korean Society of Infectious Diseases, Korean Society of Pediatric Infectious Diseases, Korean Society of Epidemiology, et al. Report on the epidemiological features of coronavirus disease 2019 (COVID-19) outbreak in the Republic of Korea from January 19 to March 2, 2020. J Korean Med Sci. 2020;35(10):e112.
  • Lee VJ, Chiew CJ, Khong WX. Interrupting transmission of COVID-19: lessons from containment efforts in Singapore. J Travel Med. 2020;27:3.
  • Etievant S, Bal A, Escuret V, et al. Performance assessment of SARS-CoV-2 PCR assays developed by WHO referral laboratories. J Clin Med. 2020;9:1871.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
  • Lescure F-X, Bouadma L, Nguyen D, et al. Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect Dis. 2020;20:697–706.
  • El-Aziz TMA, Stockand JD. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) – an update on the status. Infect Genet Evol. 2020;83:104327.
  • Yang H-C, Chen C, Wang J-H, et al. Genomic, geographic and temporal distributions of SARS-CoV-2 mutations. bioRxiv [Internet]. [cited 2020 Jun 3]. Available from: https://www.biorxiv.org/content/https://doi.org/10.1101/2020.04.22.055863v1.
  • Gámbaro F, Behillil S, Baidaliuk A, et al. Introductions and early spread of SARS-CoV-2 in France, 24 January to 23 March 2020. Eurosurveillance. 2020;25:2001200.
  • Baillie GJ, Galiano M, Agapow P-M, et al. Evolutionary dynamics of local pandemic H1N1/2009 influenza virus lineages revealed by whole-genome analysis. J Virol. 2012;86:11–18.
  • Poon LLM, Song T, Rosenfeld R, et al. Quantifying influenza virus diversity and transmission in humans. Nat Genet. 2016;48:195–200.
  • Phan T. Genetic diversity and evolution of SARS-CoV-2. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2020;81:104260.
  • Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182:812–827.
  • Zhang L, Jackson CB, Mou H, et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv [Internet]. [cited 2020 Jul 27]. Available from: https://www.biorxiv.org/content/https://doi.org/10.1101/2020.06.12.148726v1.
  • Chiu RWK, Chim SSC, Tong Y, et al. Tracing SARS-coronavirus variant with large genomic deletion. Emerg Infect Dis. 2005;11:168–170.
  • Muth D, Corman VM, Roth H, et al. Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission. Sci Rep. 2018;8:15177.
  • Bal A, Destras G, Gaymard A, et al. Molecular characterization of SARS-CoV-2 in the first COVID-19 cluster in France reveals an amino acid deletion in nsp2 (Asp268del). Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2020;26:960–962.
  • Su YCF, Anderson DE, Young BE, et al. Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2. mBio. 2020;11(4).
  • Holland LA, Kaelin EA, Maqsood R, et al. An 81-nucleotide deletion in SARS-CoV-2 ORF7a identified from sentinel surveillance in Arizona (January to March 2020). J Virol. 2020;94(14).
  • Lau S-Y, Wang P, Mok BW-Y, et al. Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerg Microbes Infect. 2020;9:837–842.
  • Charre C, Givevra C, Sabatier M, et al. Evaluation of NGS-based approaches for SARS-CoV-2 whole genome characterisation. bioRxiv [Internet]. [cited 2020 Jul 20]. DOI:https://doi.org/10.1101/2020.07.14.201947
  • R Core Team. R: A language and environment for statistical computing [Internet]. R Computing Foundation for Statistical Computing; 2013. Available from: http://www.R-project.org/.
  • Singer JB, Thomson EC, McLauchlan J, et al. GLUE: a flexible software system for virus sequence data. BMC Bioinform. 2018;19: Art. no. 532.
  • Perucho M, Goldfarb M, Shimizu K, et al. Human-tumor-derived cell lines contain common and different transforming genes. Cell. 1981;27:467–476.
  • World Health Organization. Laboratory biosafety guidance related to coronavirus disease (COVID-19): interim guidance, 13 May 2020; 2020 [cited 2020 Jul 17]. Available from: https://apps.who.int/iris/handle/10665/332076.
  • Pachetti M, Marini B, Benedetti F, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 2020;18: Art. no. 179.
  • Batty EM, Kochakarn T, Panthan B, et al. Genomic surveillance of SARS-CoV-2 in Thailand reveals mixed imported populations, a local lineage expansion and a virus with truncated ORF7a. medRxiv [Internet]. [cited 2020 Jun 4]. Available from: https://www.medrxiv.org/content/https://doi.org/10.1101/2020.05.22.20108498v1.
  • Chrisman B, Paskov K, Stockham N, et al. Common microdeletions in SARS-CoV-2 sequences [Internet]. Virological. 2020. Available from: https://virological.org/t/common-microdeletions-in-sars-cov-2-sequences/485.
  • Alm E, Broberg EK, Connor T, et al. Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European region, January to June 2020. Eurosurveillance. 2020;25(32).
  • Riojas MA, Frank AM, Puthuveetil NP, et al. A rare deletion in SARS-CoV-2 ORF6 dramatically alters the predicted three-dimensional structure of the resultant protein [Internet]. Cold Spring Harbor Laboratory. 2020 [cited 2020 Aug 5]. Available from: https://www.biorxiv.org/content/https://doi.org/10.1101/2020.06.09.134460v1.
  • Shi J, Sun J, Hu Y. Enteric involvement of SARS-CoV-2: Implications for the COVID-19 management, transmission, and infection control. Virulence. 2020;11:941–944.
  • Duchene S, Featherstone L, Haritopoulou-Sinanidou M, et al. Temporal signal and the phylodynamic threshold of SARS-CoV-2. bioRxiv [Internet]. Available from: https://www.biorxiv.org/content/https://doi.org/10.1101/2020.05.04.077735v1.
  • Day T, Gandon S, Lion S, et al. On the evolutionary epidemiology of SARS-CoV-2. Curr Biol. 2020;30:R849–R857.
  • Oude Munnink BB, Nieuwenhuijse DF, Stein M, et al. Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands. Nat Med. 2020;26:1405–1410.
  • McHardy AC, Adams B, Manchester M. The role of genomics in tracking the evolution of influenza A virus. Plos Pathog. 2009;5:e1000566.
  • Keng C-T, Tan Y-J. Molecular and biochemical characterization of the SARS-CoV accessory proteins ORF8a, ORF8b and ORF8ab. Mol Biol SARS-Coronavirus. 2009: 177–191.
  • Liu W, Tang F, Fontanet A, et al. Molecular Epidemiology of SARS-associated coronavirus, Beijing. Emerg Infect Dis. 2005;11:1420–1424.
  • Zhao G. SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era. Philos Trans R Soc B Biol Sci. 2007;362:1063–1081.
  • Gunalan V, Mirazimi A, Tan Y-J. A putative diacidic motif in the SARS-CoV ORF6 protein influences its subcellular localization and suppression of expression of co-transfected expression constructs. BMC Res Notes. 2011;4:446.
  • Geng H, Liu Y-M, Chan W-S, et al. The putative protein 6 of the severe acute respiratory syndrome-associated coronavirus: expression and functional characterization. FEBS Lett. 2005;579:6763–6768.
  • Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, et al. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol. 2007;81:548–557.
  • Mahauad-Fernandez WD, Okeoma CM. The role of BST-2/tetherin in host protection and disease manifestation. Immun Inflamm Dis [Internet]. 2015 [cited 2020 Nov 27];4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768070/.
  • Lepiller Q, Soulier E, Li Q, et al. Antiviral and immunoregulatory effects of Indoleamine-2,3-dioxygenase in hepatitis C virus infection. J Innate Immun. 2015;7:530–544.
  • Bailey CC, Zhong G, Huang I-C, et al. IFITM-family proteins: the cell’s first line of antiviral defense. Annu Rev Virol. 2014;1:261–283.
  • Miorin L, Kehrer T, Sanchez-Aparicio MT, et al. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc Natl Acad Sci. 2020;117:28344–28354.
  • Coperchini F, Chiovato L, Croce L, et al. The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020;53:25–32.
  • Li J-Y, Liao C-H, Wang Q, et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res. 2020;286:198074.
  • Yuen C-K, Lam J-Y, Wong W-M, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect. 2020;9:1418–1428.
  • Schirinzi A, Pesce F, Laterza R, et al. Pentraxin 3: potential prognostic role in SARS-CoV-2 patients admitted to the emergency department. J Infect [Internet]. 2020 [cited 2020 Nov 22]. Available from: https://www.journalofinfection.com/article/S0163-4453(20)30687-3/abstract.
  • Castelli V, Cimini A, Ferri C. Cytokine storm in COVID-19: “when you come out of the storm, you won’t be the same person who walked in”. Front Immunol [Internet]. 2020 [cited 2020 Nov 27];11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492381/.
  • Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369:718–724.