2,755
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Identification of key residues involved in the neuraminidase antigenic variation of H9N2 influenza virus

, , , , , , & show all
Pages 210-219 | Received 28 Oct 2020, Accepted 18 Jan 2021, Published online: 02 Feb 2021

References

  • Gu M, Xu L, Wang X, et al. Current situation of H9N2 subtype avian influenza in China. Vet Res. 2017;48(1):49.
  • Pan QLA, Zhang F, Ling Y, et al. Co-infection of broilers with Ornithobacterium rhinotracheale and H9N2 avian influenza virus. BMC Vet Res. 2012;8(1):104–104.
  • Li H, Liu X, Chen F, et al. Avian influenza virus subtype H9N2 affects intestinal microbiota, barrier structure injury, and inflammatory intestinal disease in the Chicken Ileum. Viruses. 2018 May 18;10(5):270.
  • Uyeki TM, Yu-Hoi C, Katz JM, et al. Lack of evidence for human-to-human transmission of avian influenza A (H9N2) viruses in Hong Kong, China 1999. Emerg Infect Dis. 2002;8(2):154–159.
  • Peiris M, Yuen KY, Leung CW, et al. Human infection with influenza H9N2. Lancet. 1999;354(9182):916–917.
  • Lin YP, Shaw M, et al. Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2. Proc NatI Acad Sci USA. 2000;97(17):9654–9658.
  • Jallow MM, Fall A, Barry MA, et al. Genetic characterization of the first detected human case of low pathogenic avian influenza A/H9N2 in sub-Saharan Africa, Senegal. Emerg Microbes Infect. 2020;9(1):1092–1095.
  • Lin YP, Shaw M, Gregory V, et al. Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc NatI Acad Sci USA. 2000;97(17):9654–9658.
  • Gao R, Cao B, Hu Y, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med. 2013;368(20):1888–1897.
  • Lili R, Xuelian Y, Baihui Z, et al. Infection with possible precursor of avian influenza A(H7N9) virus in a child, China, 2013. Emerg Infect Dis. 2014;20(8):1362–1365.
  • Zhang T, Bi Y, Tian H, et al. Human infection with influenza virus A(H10N8) from live poultry markets, China, 2014. Emerg Infect Dis. 2014 Dec;20(12):2076–2079.
  • Ye G, Liang CH, Hua DG, et al. Phylogenetic analysis and pathogenicity assessment of two strains of avian influenza virus subtype H9N2 isolated from migratory birds: high homology of internal genes with human H10N8 virus. Front Microbiol. 2016;7:57.
  • Peng Q, Zhu R, Wang X, et al. Impact of the variations in potential glycosylation sites of the hemagglutinin of H9N2 influenza virus. Virus Genes. 2019 Apr;55(2):182–190.
  • Peacock TP, Benton DJ, James J, et al. Immune escape variants of H9N2 influenza viruses containing deletions at the hemagglutinin receptor binding site retain fitness in vivo and display enhanced zoonotic characteristics. J Virol. 2017 Jul 15;91(14):e00218-17–17.
  • Wan Z, Ye J, Xu L, et al. Antigenic mapping of the hemagglutinin of an H9N2 avian influenza virus reveals novel critical amino acid positions in antigenic sites. J Virol. 2014 Apr;88(7):3898–3901.
  • Sun Y, Tan Y, Wei K, et al. Amino acid 316 of hemagglutinin and the neuraminidase stalk length influence virulence of H9N2 influenza virus in chickens and mice. J Virol. 2013 Mar;87(5):2963–2968.
  • Jin F, Dong X, Wan Z, et al. A single mutation N166D in hemagglutinin affects antigenicity and pathogenesis of H9N2 avian influenza virus. Viruses. 2019;11(8):709.
  • Wan Z, Ye J, Sang J, et al. Identification of amino acids in H9N2 influenza virus neuraminidase that are critical for the binding of two mouse monoclonal antibodies. Vet Microbiol. 2016 May 1;187:58–63.
  • Shao H, Zhou X, Fan Z, et al. Impact of a potential glycosylation site at neuraminidase amino acid 264 of influenza A/H9N2 virus. Vet Microbiol. 2016;196:9–13.
  • Sandbulte MR, Westgeest KB, Jin G, et al. Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proc NatI Acad Sci USA. 2011;108(51):20748–20753.
  • Powell H, Pekosz A. Neuraminidase antigenic drift of H3N2 clade 3c.2a viruses alters virus replication, enzymatic activity and inhibitory antibody binding. PLoS Pathog. 2020 Jun;16(6):e1008411.
  • Wan H, Gao J, Yang H, et al. The neuraminidase of A(H3N2) influenza viruses circulating since 2016 is antigenically distinct from the A/Hong Kong/4801/2014 vaccine strain. Nature Microbiol. 2019;4(12):2216–2225.
  • Wang F, Wang Y, Wan Z, et al. Generation of a recombinant chickenized monoclonal antibody against the neuraminidase of H9N2 avian influenza virus. AMB Express. 2020 Aug 20;10(1):151.
  • Air GM, Els MC, Brown LE, et al. Location of antigenic sites on the three-dimensional structure of the influenza N2 virus neuraminidase. Virology. 1985;145(2):237–248.
  • Zhu X, Turner HL, Lang S, et al. Structural basis of protection against H7N9 influenza virus by human anti-N9 neuraminidase antibodies. Cell Host Microbe. 2019;26(6):729–738.
  • Wan H, Qi L, Gao J, et al. Comparison of the efficacy of N9 neuraminidase-specific monoclonal antibodies against influenza A(H7N9) virus infection. J Virol. 2017;92(4):e01588–17.
  • Lentz MR, Air GM, Laver WG, et al. Sequence of the neuraminidase gene of influenza virus A/Tokyo/3/67 and previously uncharacterized monoclonal variants. Virology. 1984;135(1):257–265.
  • Munoz ET, Deem MW. Epitope analysis for influenza vaccine design. Vaccine. 2005 Jan 19;23(9):1144–1148.
  • Gulati U, Hwang CC, Venkatramani L, et al. Antibody epitopes on the neuraminidase of a recent H3N2 influenza virus (A/memphis/31/98). J Virol. 2002 Dec;76(23):12274–12280.
  • Wan H, Gao J, Xu K, et al. Molecular basis for broad neuraminidase immunity: conserved epitopes in seasonal and pandemic H1N1 as well as H5N1 influenza viruses. J Virol. 2013 Aug;87(16):9290–9300.
  • Zhang Z, Hu S, Li Z, et al. Multiple amino acid substitutions involved in enhanced pathogenicity of LPAI H9N2 in mice. Infect Genet Evol. 2011 Oct;11(7):1790–1797.
  • Sealy JE, Yaqub T, Peacock TP, et al. Association of increased receptor-binding avidity of influenza A(H9N2) viruses with escape from antibody-based immunity and enhanced zoonotic potential. Emerg Infect Dis. 2019;25(1):63–72.