9,610
Views
112
CrossRef citations to date
0
Altmetric
Coronaviruses

The in vitro antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor

, , , & ORCID Icon
Pages 317-330 | Received 26 Dec 2020, Accepted 05 Feb 2021, Published online: 27 Feb 2021

References

  • Hui DS, Azhar EI, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health – The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020 Feb;91:264–266.
  • Gagneur A, Sizun J, Vallet S, et al. Coronavirus-related nosocomial viral respiratory infections in a neonatal and paediatric intensive care unit: a prospective study. J Hosp Infect. 2002 May;51(1):59–64.
  • Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet. 2015 Sep 5;386(9997):995–1007.
  • Mesel-Lemoine M, Millet J, Vidalain PO, et al. A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes. J Virol. 2012 Jul;86(14):7577–7587.
  • Vorland LH. Lactoferrin: a multifunctional glycoprotein. APMIS. 1999 Nov;107(11):971–981.
  • Wang Y, Wang P, Wang H, et al. Lactoferrin for the treatment of COVID-19 (Review). Exp Ther Med. 2020 Dec;20(6):272.
  • Kell DB, Heyden EL, Pretorius E. The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Front Immunol. 2020 May 28;11:1221.
  • Siqueiros-Cendon T, Arevalo-Gallegos S, Iglesias-Figueroa BF, et al. Immunomodulatory effects of lactoferrin. Acta Pharmacol Sin. 2014 May;35(5):557–566.
  • Russell-Jones G. Intestinal receptor targeting for peptide delivery: an expert's personal perspective on reasons for failure and new opportunities. Ther Deliv. 2011 Dec;2(12):1575–1593.
  • Kuwata H, Yamauchi K, Teraguchi S, et al. Functional fragments of ingested lactoferrin are resistant to proteolytic degradation in the gastrointestinal tract of adult rats. J Nutr. 2001 Aug;131(8):2121–2127.
  • Gajda-Morszewski P, Spiewak-Wojtyla K, Oszajca M, et al. Strategies for oral delivery of metal-saturated lactoferrin. Curr Protein Pept Sci. 2019;20(11):1046–1051.
  • Swart PJ, Kuipers ME, Smit C, et al. Antiviral effects of milk proteins: acylation results in polyanionic compounds with potent activity against human immunodeficiency virus types 1 and 2 in vitro. AIDS Res Hum Retroviruses. 1996 Jun 10;12(9):769–775.
  • Yi M, Kaneko S, Yu DY, et al. Hepatitis C virus envelope proteins bind lactoferrin. J Virol. 1997 Aug;71(8):5997–6002.
  • Pietrantoni A, Di Biase AM, Tinari A, et al. Bovine lactoferrin inhibits adenovirus infection by interacting with viral structural polypeptides. Antimicrob Agents Chemother. 2003 Aug;47(8):2688–2691.
  • Belting M. Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci. 2003 Mar;28(3):145–151.
  • Waarts BL, Aneke OJ, Smit JM, et al. Antiviral activity of human lactoferrin: inhibition of alphavirus interaction with heparan sulfate. Virology. 2005 Mar 15;333(2):284–292.
  • Lang J, Yang N, Deng J, et al. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS One. 2011;6(8):e23710.
  • Milewska A, Zarebski M, Nowak P, et al. Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. J Virol. 2014 Nov;88(22):13221–13230.
  • Naskalska A, Dabrowska A, Szczepanski A, et al. Membrane protein of human coronavirus NL63 is responsible for interaction with the adhesion receptor. J Virol. 2019 Oct 1;93(19):e00355–19.
  • Ahmed A, Siman-Tov G, Hall G, et al. Human antimicrobial peptides as therapeutics for viral infections. Viruses. 2019 Aug 1;11(8):704.
  • Tavassoly O, Safavi F, Tavassoly I. Heparin-binding peptides as novel therapies to stop SARS-CoV-2 cellular entry and infection. Mol Pharmacol. 2020 Nov;98(5):612–619.
  • Marr AK, Jenssen H, Moniri MR, et al. Bovine lactoferrin and lactoferricin interfere with intracellular trafficking of herpes simplex virus-1. Biochimie. 2009 Jan;91(1):160–164.
  • Clausen TM, Sandoval DR, Spliid CB, et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell. 2020 Nov 12;183(4):1043–1057.
  • Kim SY, Jin W, Sood A, et al. Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Res. 2020 Sep;181:104873.
  • Yu J, Yuan X, Chen H, et al. Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition. Blood. 2020 Oct 29;136(18):2080–2089.
  • Zhang Q, Chen CZ, Swaroop M, et al. Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. Cell Discov. 2020 Nov 4;6(1):80.
  • Crawford KHD, Eguia R, Dingens AS, et al. Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays. Viruses. 2020 May 6;12(5):513.
  • Nie J, Li Q, Wu J, et al. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg Microbes Infect. 2020 Dec;9(1):680–686.
  • Hu Y, Ma C, Szeto T, et al. Boceprevir, calpain inhibitors II and XII, and GC-376 have broad-spectrum antiviral activity against coronaviruses in cell culture. bioRxiv. 2020 Nov 1. DOI:2020.10.30.362335
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 Apr 16;181(2):271–280.
  • Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA. 2020 May 26;117(21):11727–11734.
  • Tharappel AM, Samrat SK, Li Z, et al. Targeting crucial host factors of SARS-CoV-2. ACS Infect Dis. 2020 Nov 13;6(11):2844–2865.
  • Kong Q, Xiang Z, Wu Y, et al. Analysis of the susceptibility of lung cancer patients to SARS-CoV-2 infection. Mol Cancer. 2020 Apr 28;19(1):80.
  • Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc. 2007;2(9):2212–2221.
  • Tree JA, Turnbull JE, Buttigieg KR, et al. Unfractionated heparin inhibits live wild type SARS-CoV-2 cell infectivity at therapeutically relevant concentrations. Br J Pharmacol. 2021 Feb;178(3):626–635.
  • Bayat Mokhtari R, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget. 2017 Jun 6;8(23):38022–38043.
  • van der Pluijm RW, Tripura R, Hoglund RM, et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet. 2020 Apr 25;395(10233):1345–1360.
  • De Clercq E, Li G. Approved antiviral drugs over the past 50 Years. Clin Microbiol Rev. 2016 Jul;29(3):695–747.
  • Ma C, Hu Y, Zhang J, et al. Pharmacological characterization of the mechanism of action of R523062, a promising antiviral for Enterovirus D68. ACS Infect Dis. 2020 Aug 14;6(8):2260–2270.
  • Shimazaki K, Tazume T, Uji K, et al. Properties of a heparin-binding peptide derived from bovine lactoferrin. J Dairy Sci. 1998 Nov;81(11):2841–2849.
  • Di Biase AM, Pietrantoni A, Tinari A, et al. Heparin-interacting sites of bovine lactoferrin are involved in anti-adenovirus activity. J Med Virol. 2003 Apr;69(4):495–502.
  • Drobni P, Naslund J, Evander M. Lactoferrin inhibits human papillomavirus binding and uptake in vitro. Antiviral Res. 2004 Oct;64(1):63–68.
  • Pietrantoni A, Ammendolia MG, Tinari A, et al. Bovine lactoferrin peptidic fragments involved in inhibition of echovirus 6 in vitro infection. Antiviral Res. 2006 Feb;69(2):98–106.
  • Andersen JH, Jenssen H, Sandvik K, et al. Anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surface. J Med Virol. 2004 Oct;74(2):262–271.
  • Andersen JH, Osbakk SA, Vorland LH, et al. Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res. 2001 Aug;51(2):141–149.
  • Hwang PM, Zhou N, Shan X, et al. Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry. 1998 Mar 24;37(12):4288–4298.
  • Wu L, Viola CM, Brzozowski AM, et al. Structural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol. 2015 Dec;22(12):1016–1022.
  • Tree JA, Turnbull JE, Buttigieg KR, et al. Unfractionated heparin inhibits live wild type SARS-CoV-2 cell infectivity at therapeutically relevant concentrations. Br J Pharmacol. 2021 Feb;178(3):626–635.
  • Milewska A, Nowak P, Owczarek K, et al. Entry of human coronavirus NL63 into the cell. J Virol. 2018 Jan 17;92(3):e01933–17.
  • Mirabelli C, Wotring JW, Zhang CJ, et al. Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19. bioRxiv. 2020 Jun 10. DOI:2020.05.27.117184.
  • de Carvalho CAM, da Rocha Matos A, Caetano BC, et al. In vitro inhibition of SARS-CoV-2 infection by bovine lactoferrin. bioRxiv. 2020. DOI:2020.05.13.093781.
  • Hu Y, Zhang J, Musharrafieh RG, et al. Discovery of dapivirine, a nonnucleoside HIV-1 reverse transcriptase inhibitor, as a broad-spectrum antiviral against both influenza A and B viruses. Antiviral Res. 2017 Sep;145:103–113.
  • Ma C, Sacco MD, Hurst B, et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020 Aug;30(8):678–692.
  • Zhang J, Hu Y, Wu N, et al. Discovery of influenza polymerase PA-PB1 interaction inhibitors using an in vitro split-luciferase complementation-based assay. ACS Chem Biol. 2020 Jan 17;15(1):74–82.
  • Ma C, Li F, Musharrafieh RG, et al. Discovery of cyclosporine A and its analogs as broad-spectrum anti-influenza drugs with a high in vitro genetic barrier of drug resistance. Antiviral Res. 2016 Sep;133:62–72.
  • Zhang J, Hu Y, Hau R, et al. Identification of NMS-873, an allosteric and specific p97 inhibitor, as a broad antiviral against both influenza A and B viruses. Eur J Pharm Sci. 2019 May 15;133:86–94.
  • Musharrafieh R, Ma C, Zhang J, et al. Validating Enterovirus D68-2A(pro) as an antiviral drug target and the discovery of Telaprevir as a potent D68-2A(pro) inhibitor. J Virol. 2019 Mar 21; 93(7):e02221–18.
  • Ma C, Hu Y, Zhang J, et al. A novel capsid binding inhibitor displays potent antiviral activity against Enterovirus D68. ACS Infect Dis. 2019 Nov 8;5(11):1952–1962.
  • Zhang J, Hu Y, Foley C, et al. Exploring Ugi-Azide four-component reaction products for broad-spectrum influenza antivirals with a high genetic barrier to drug resistance. Sci Rep. 2018 Mar 15;8(1):4653.
  • Trott O, Olson AJ. Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 30;31(2):455–461.