2,340
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Acquiring high expression of suilysin enable non-epidemic Streptococccus suis to cause streptococcal toxic shock-like syndrome (STSLS) through NLRP3 inflammasome hyperactivation

, , , , , , & show all
Pages 1309-1319 | Received 16 Jan 2021, Accepted 20 Mar 2021, Published online: 01 Jul 2021

References

  • Segura M. Streptococcus suis: an emerging human threat. J Infect Dis. 2009 Jan 1;199(1):4–6.
  • Segura M. Streptococcus suis research: progress and challenges. Pathogens. 2020 Aug 27;9(9):707.
  • Gomez-Torres J, Nimir A, Cluett J, et al. Human case of Streptococcus suis disease, Ontario, Canada. Emerg Infect Dis. 2017 Dec;23(12):2107–2109.
  • Gomez-Zorrilla S, Ardanuy C, Lora-Tamayo J, et al. Streptococcus suis infection and malignancy in man, Spain. Emerg Infect Dis. 2014 Jun;20(6):1067–1068.
  • Huong VT, Ha N, Huy NT, et al. Epidemiology, clinical manifestations, and outcomes of Streptococcus suis infection in humans. Emerg Infect Dis. 2014 Jul;20(7):1105–1114.
  • Ye C, Zheng H, Zhang J, et al. Clinical, experimental, and genomic differences between intermediately pathogenic, highly pathogenic, and epidemic Streptococcus suis. J Infect Dis. 2009 Jan 1;199(1):97–107.
  • Tang J, Wang C, Feng Y, et al. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med. 2006 May;3(5):e151.
  • Lachance C, Gottschalk M, Gerber PP, et al. Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis. Infect Immun. 2013 Jun;81(6):1928–1939.
  • Lachance C, Segura M, Dominguez-Punaro MC, et al. Deregulated balance of omega-6 and omega-3 polyunsaturated fatty acids following infection by the zoonotic pathogen Streptococcus suis. Infect Immun. 2014 May;82(5):1778–1785.
  • Yang C, Zhao J, Lin L, et al. Targeting TREM-1 signaling in the presence of antibiotics is effective against streptococcal toxic-shock-like syndrome (STSLS) caused by Streptococcus suis. Front Cell Infect Microbiol. 2015;5:79.
  • Lin L, Xu L, Lv W, et al. An NLRP3 inflammasome-triggered cytokine storm contributes to Streptococcal toxic shock-like syndrome (STSLS). PLoS Pathog. 2019 Jun;15(6):e1007795.
  • Song L, Li X, Xiao Y, et al. Contribution of Nlrp3 inflammasome activation mediated by suilysin to streptococcal toxic shock-like syndrome. Front Microbiol. 2020;11:1788.
  • Zhang AD, Yang M, Hu P, et al. Comparative genomic analysis of Streptococcus suis reveals significant genomic diversity among different serotypes. Bmc Genomics. 2011 Oct 25;12:523.
  • Lefebure T, Stanhope MJ. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol. 2007;8(5):R71.
  • Holden MTG, Hauser H, Sanders M, et al. Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. Plos One. 2009 Jul 15;4(7):e6072.
  • Du PC, Zheng H, Zhou JP, et al. Detection of multiple parallel transmission outbreak of Streptococcus suis human infection by use of genome epidemiology, China, 2005. Emerging Infect Dis.. 2017 Feb;23(2):204–211.
  • Chen C, Tang JQ, Dong W, et al. A glimpse of streptococcal toxic shock syndrome from comparative genomics of S-suis 2 Chinese isolates. Plos One. 2007 Mar 21;2(3):e315.
  • He ZX, Pian YY, Ren ZQ, et al. Increased production of suilysin contributes to invasive infection of the Streptococcus suis strain 05ZYH33. Mol Med Rep. 2014 Dec;10(6):2819–2826.
  • Wang ML, Du PC, Wang JP, et al. Genomic epidemiology of Streptococcus suis sequence type 7 sporadic infections in the guangxi zhuang autonomous region of China. Pathogens. 2019 Dec;8(4):187.
  • King SJ, Leigh JA, Heath PJ, et al. Development of a multilocus sequence typing scheme for the pig pathogen Streptococcus suis: identification of virulent clones and potential capsular serotype exchange. J Clin Microbiol. 2002 Oct;40(10):3671–3680.
  • Takamatsu D, Osaki M, Sekizaki T. Thermosensitive suicide vectors for gene replacement in Streptococcus suis. Plasmid. 2001 Sep;46(2):140–148.
  • Xu L, Huang B, Du H, et al. Crystal structure of cytotoxin protein suilysin from Streptococcus suis. Protein Cell. 2010 Jan;1(1):96–105.
  • Chen J, Chen ZJ. Ptdins4p on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature. 2018 Dec;564(7734):71–76.
  • Brewer SM, Brubaker SW, Monack DM. Host inflammasome defense mechanisms and bacterial pathogen evasion strategies. Curr Opin Immunol. 2019 Oct;60:63–70.
  • Lavagna A, Auger JP, Girardin SE, et al. Recognition of Lipoproteins by toll-like receptor 2 and DNA by the AIM2 inflammasome Is responsible for production of interleukin-1β by virulent suilysin-negative Streptococcus suis serotype 2. Pathogens. 2020 Feb 21;9(2):147.
  • Dolinay T, Kim YS, Howrylak J, et al. Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am J Resp Crit Care. 2012 Jun 1;185(11):1225–1234.
  • Kroemer A, Khan K, Plassmeyer M, et al. Inflammasome activation and pyroptosis in lymphopenic liver patients with COVID-19. J Hepatol. 2020 Nov;73(5):1258–1262.
  • Freeman TL, Swartz TH. Targeting the NLRP3 inflammasome in severe COVID-19. Front Immunol. 2020 Jun 23;11:1518.
  • Paniri A, Akhavan-Niaki H. Emerging role of IL-6 and NLRP3 inflammasome as potential therapeutic targets to combat COVID-19: role of lncRNAs in cytokine storm modulation. Life Sci. 2020 Sep 15;257:118114.
  • Sergi CM, Chiu B. Targeting NLRP3 inflammasome in an animal model for Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). J Med Virol. 2021 Feb; 93(2):669–670.
  • Wolf AJ, Reyes CN, Liang W, et al. Hexokinase Is an innate immune receptor for the detection of bacterial peptidoglycan. Cell. 2016 Jul 28;166(3):624–636.
  • Lavagna A, Auger JP, Dumesnil A, et al. Interleukin-1 signaling induced by Streptococcus suis serotype 2 is strain-dependent and contributes to bacterial clearance and inflammation during systemic disease in a mouse model of infection. Vet Res. 2019 Jul 1;50(1):52.
  • Chabot-Roy G, Willson P, Segura M, et al. Phagocytosis and killing of Streptococcus suis by porcine neutrophils. Microb Pathog. 2006 Jul;41(1):21–32.
  • Takeuchi D, Akeda Y, Nakayama T, et al. The contribution of suilysin to the pathogenesis of Streptococcus suis meningitis. J Infect Dis. 2014 May 15;209(10):1509–1519.
  • Deng SM, Zhao LY, Zhu JQ, et al. Complement C3aR/C5aR-binding protein Suilysin of Streptococcus suis contributes to monocyte chemotaxis. Vet Microbiol. 2020 Mar;242:108599.
  • Bi L, Pian Y, Chen S, et al. Toll-like receptor 4 confers inflammatory response to Suilysin. Front Microbiol. 2015;6:644.
  • Lv QY, Hao HJ, Bi LL, et al. Suilysin remodels the cytoskeletons of human brain microvascular endothelial cells by activating RhoA and Rac1 GTPase. Protein Cell. 2014 Apr;5(4):261–264.
  • Liu HT, Zhu S, Sun YY, et al. Selection of potential virulence factors contributing to Streptococcus suis serotype 2 penetration into the blood-brain barrier in an in vitro co-culture model. J Microbiol Biotechnol. 2017 Jan;27(1):161–170.
  • Bercier P, Gottschalk M, Grenier D. Streptococcus suis suilysin compromises the function of a porcine tracheal epithelial barrier model. Microb Pathogenesis. 2020 Feb;139:103913.
  • Zhang SW, Zheng YL, Chen SL, et al. Suilysin-induced platelet-neutrophil complexes formation is triggered by pore formation-dependent calcium influx. Sci Rep. 2016 Nov 10;6:36787.
  • Shen X, Liu H, Li G, et al. Silibinin attenuates Streptococcus suis serotype 2 virulence by targeting suilysin. J Appl Microbiol. 2019 Feb;126(2):435–442.
  • Li G, Wang G, Wang S, et al. Ginkgetin in vitro and in vivo reduces Streptococcus suis virulence by inhibiting suilysin activity. J Appl Microbiol. 2019 Nov;127(5):1556–1563.
  • Li G, Wang GZ, Si XS, et al. Inhibition of suilysin activity and inflammation by myricetin attenuates Streptococcus suis virulence. Life Sci. 2019 Apr 15;223:62–68.
  • Li G, Shen X, Wei YH, et al. Quercetin reduces Streptococcus suis virulence by inhibiting suilysin activity and inflammation. Int Immunopharmacol. 2019 Apr;69:71–78.
  • Zhang YY, Zong BB, Wang XR, et al. Fisetin lowers Streptococcus suis serotype 2 pathogenicity in mice by inhibiting the hemolytic activity of Suilysin. Front Microbiol. 2018 Jul 30;9:1723.
  • Li G, Lu GJ, Qi ZM, et al. Morin attenuates Streptococcus suis pathogenicity in mice by neutralizing suilysin activity. Front Microbiol. 2017 Mar 20;8:460.