3,475
Views
10
CrossRef citations to date
0
Altmetric
Influenza Infections

PB1 S524G mutation of wild bird-origin H3N8 influenza A virus enhances virulence and fitness for transmission in mammals

ORCID Icon, , , , , , , , , , , , , , , & show all
Pages 1038-1051 | Received 18 Nov 2020, Accepted 30 Mar 2021, Published online: 06 Jun 2021

References

  • Yoon S-W, Webby RJ, Webster RG. Evolution and ecology of influenza A viruses. In: Influenza pathogenesis and control-volume I. Springer: Berlin/Heidelberg; 2014. p. 359–375.
  • Olsen B, Munster VJ, Wallensten A, et al. Global patterns of influenza A virus in wild birds. Science. 2006;312(5772):384–388.
  • Liu D, Shi W, Shi Y, et al. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet. 2013;381(9881):1926–1932.
  •  AIWUN. Avian Influenza Weekly Update Number 775. [cited 15 Jan 2021]. 2021. https://wwwwhoint/docs/default-source/wpro-documents/emergency/surveillance/avian-influenza/ai-20210115pdf?sfvrsn=30d65594_95.
  • Pan M, Gao R, Lv Q, et al. Human infection with a novel, highly pathogenic avian influenza A (H5N6) virus: virological and clinical findings. J Infect. 2016;72(1):52–59.
  • Wang TT, Palese P. Emergence and evolution of the 1918, 1957, 1968, and 2009 pandemic virus strains. Textbook Influ. 2013;6:218.
  • Anthony S, Leger JS, Pugliares K, et al. Emergence of fatal avian influenza in New England harbor seals. MBio. 2012;3(4):e00166–12.
  • Crawford P, Dubovi EJ, Castleman WL, et al. Transmission of equine influenza virus to dogs. Science. 2005;310(5747):482–485.
  • Gibbs EPJ, Anderson TC. Equine and canine influenza: a review of current events. Anim Health Res Rev. 2010;11(1):43–51.
  • Tu J, Zhou H, Jiang T, et al. Isolation and molecular characterization of equine H3N8 influenza viruses from pigs in China. Arch Virol. 2009;154(5):887–890.
  • Qi T, Guo W, Huang W, et al. Isolation and genetic characterization of H3N8 equine influenza virus from donkeys in China. Vet Microbiol. 2010;144(3–4):455–460.
  • Karlsson EA, Ip HS, Hall JS, et al. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal. Nat Commun. 2014;5(1):1–7.
  • Gao Y, Zhang Y, Shinya K, et al. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog. 2009;5(12):e1000709.
  • Herfst S, Schrauwen EJ, Linster M, et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012;336(6088):1534–1541.
  • Wan H, Perez DR. Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J Virol. 2007;81(10):5181–5191.
  • Wan H, Sorrell EM, Song H, et al. Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLoS One. 2008;3(8):e2923.
  • Wang Z, Yang H, Chen Y, et al. A single-amino-acid substitution at position 225 in hemagglutinin alters the transmissibility of Eurasian avian-like H1N1 swine influenza virus in Guinea pigs. J Virol. 2017;91:21.
  • Imai M, Watanabe T, Hatta M, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature. 2012;486(7403):420–428.
  • Steel J, Lowen AC, Mubareka S, et al. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627 K or 627E/701N. PLoS Pathog. 2009;5:1.
  • Mehle A, Doudna JA. Adaptive strategies of the influenza virus polymerase for replication in humans. Proc Natl Acad Sci USA. 2009;106(50):21312–21316.
  • de Wit E, Munster VJ, van Riel D, et al. Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in the human host. J Virol. 2010;84(3):1597–1606.
  • Gao Y, Zhang Y, Shinya K, et al. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog. 2009;5:12.
  • Kong H, Ma S, Wang J, et al. Identification of key amino acids in the PB2 and M1 proteins of H7N9 influenza virus that affect its transmission in Guinea pigs. J Virol. 2019;94:1.
  • Linster M, van Boheemen S, de Graaf M, et al. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell. 2014;157(2):329–339.
  • Zanin M, Wong S-S, Barman S, et al. Molecular basis of mammalian transmissibility of avian H1N1 influenza viruses and their pandemic potential. Proc Natl Acad Sci USA. 2017;114(42):11217–11222.
  • Zhang Y, Zhang Q, Kong H, et al. H5n1 hybrid viruses bearing 2009/H1N1 virus genes transmit in Guinea pigs by respiratory droplet. Science. 2013;340(6139):1459–1463.
  • Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27(3):493–497.
  • Zhang Q, Shi J, Deng G, et al. H7n9 influenza viruses are transmissible in ferrets by respiratory droplet. Science. 2013;341(6144):410–414.
  • Imai M, Watanabe T, Hatta M, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature. 2012 May 2;486(7403):420–428.
  • Wen F, Blackmon S, Olivier AK, et al. Mutation W222L at the receptor binding site of hemagglutinin could facilitate viral adaption from equine influenza A (H3N8) virus to dogs. J Virol. 2018;92(18):e01115–18.
  • Wu Z, Liu Y, Ma C, et al. Identification of the binding roles of terminal and internal glycan epitopes using enzymatically synthesized N-glycans containing tandem epitopes. Org Biomol Chem. 2016;14(47):11106–11116.
  • Li X, Shi J, Guo J, et al. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 avian influenza viruses. PLoS Pathog. 2014;10(11):e1004508.
  • Matrosovich M, Tuzikov A, Bovin N, et al. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol. 2000;74(18):8502–8512.
  • Ilyushina NA, Khalenkov AM, Seiler JP, et al. Adaptation of pandemic H1N1 influenza viruses in mice. J Virol. 2010;84(17):8607–8616.
  • Song J, Xu J, Shi J, et al. Synergistic effect of S224P and N383D substitutions in the PA of H5N1 avian influenza virus contributes to mammalian adaptation. Sci Rep. 2015;5:10510.
  • Mehle A, Dugan VG, Taubenberger JK, et al. Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers. J Virol. 2012;86(3):1750–1757.
  • Song J, Feng H, Xu J, et al. The PA protein directly contributes to the virulence of H5N1 avian influenza viruses in domestic ducks. J Virol. 2011;85(5):2180–2188.
  • Schrauwen EJ, Fouchier RA. Host adaptation and transmission of influenza A viruses in mammals. Emerg Microbes Infect. 2014;3(1):1–10.
  • Fan S, Deng G, Song J, et al. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology. 2009;384(1):28–32.
  • Tumpey TM, Maines TR, Van Hoeven N, et al. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science. 2007;315(5812):655–659.
  • Underwood PA, Skehel J, Wiley D. Receptor-binding characteristics of monoclonal antibody-selected antigenic variants of influenza virus. J Virol. 1987;61(1):206–208.
  • Guan L, Shi J, Kong X, et al. H3n2 avian influenza viruses detected in live poultry markets in China bind to human-type receptors and transmit in Guinea pigs and ferrets. Emerg Microbes Infect. 2019;8(1):1280–1290.
  • Wang G, Deng G, Shi J, et al. H6 influenza viruses pose a potential threat to human health. J Virol. 2014;88(8):3953–3964.
  • Shi J, Deng G, Kong H, et al. H7n9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res. 2017;27(12):1409–1421.
  • Li X, Shi J, Guo J, et al. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 avian influenza viruses. PLoS Pathog. 2014;10:11.
  • Koçer ZA, Krauss S, Zanin M, et al. Possible basis for the emergence of H1N1 viruses with pandemic potential from avian hosts. Emerg Microbes Infect. 2015;4(1):1–10.
  • Zhu H, Damdinjav B, Gonzalez G, et al. Absence of adaptive evolution is the main barrier against influenza emergence in horses in Asia despite frequent virus interspecies transmission from wild birds. PLoS Pathog. 2019;15(2):e1007531.
  • Ramey AM, Reeves AB, Donnelly T, et al. Introduction of eurasian-origin influenza A (H8N4) virus into North America by migratory birds. Emerging Infect Dis. 2018;24(10):1950.
  • Jeong S, Lee D-H, Kim Y-J, et al. Introduction of avian influenza A (H6N5) virus into Asia from North America by wild birds. Emerging Infect Dis. 2019;25(11):2138–2140.
  • Connor RJ, Kawaoka Y, Webster RG, et al. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology. 1994;205(1):17–23.
  • de Graaf M, Fouchier RA. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J. 2014;33(8):823–841.
  • Broszeit F, Tzarum N, Zhu X, et al. N-glycolylneuraminic acid as a receptor for influenza A viruses. Cell Rep. 2019;27(11):3284–3294.
  • Hiono T, Okamatsu M, Igarashi M, et al. Amino acid residues at positions 222 and 227 of the hemagglutinin together with the neuraminidase determine binding of H5 avian influenza viruses to Sialyl Lewis X. Arch Virol. 2016;161(2):307–316.
  • Matrosovich MN, Krauss S, Webster RG. H9n2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology. 2001;281(2):156–162.