2,210
Views
3
CrossRef citations to date
0
Altmetric
Zika

Extracellular acidosis enhances Zika virus infection both in human cells and ex-vivo tissue cultures from female reproductive tract

, , , , , , , , , , , , , & show all
Pages 1169-1179 | Received 15 Jan 2021, Accepted 18 May 2021, Published online: 13 Jun 2021

References

  • Brasil P, Calvet GA, de Souza RV, et al. Exanthema associated with Zika virus infection. Lancet Infect Dis. 2016;16:866.
  • Honein MA, Dawson AL, Petersen EE, et al. Birth defects among fetuses and infants of US women with evidence of possible Zika virus infection during pregnancy. JAMA. 2017;317:59–68.
  • Johansson MA, Mier-y-Teran-Romero L, Reefhuis J, et al. Zika and the risk of microcephaly. N Engl J Med. 2016;375:1–4.
  • Mlakar J, Korva M, Tul N, et al. Zika virus associated with microcephaly. N Engl J Med. 2016;374:951–958.
  • Lazear HM, Diamond MS. Zika virus: new clinical syndromes and its emergence in the western hemisphere. J Virol. 2016;90:4864–4875.
  • Mansuy JM, Suberbielle E, Chapuy-Regaud S, et al. Zika virus in semen and spermatozoa. Lancet Infect Dis. 2016;16:1106–1107.
  • Rowland A, Washington CI, Sheffield JS, et al. Zika virus infection in semen: a call to action and research. J Assist Reprod Genet. 2016;33:435–437.
  • Stower H. Zika virus shedding in semen. Nat Med. 2018;24:702.
  • Deckard DT, Chung WM, Brooks JT, et al. Male-to-male sexual transmission of Zika virus – Texas. MMWR Morb Mortal Wkly Rep. 2016;65:372–374.
  • Davidson A, Slavinski S, Komoto K, et al. Suspected female-to-male sexual transmission of Zika virus – New York city. MMWR Morb Mortal Wkly Rep. 2016;65:716–717.
  • Mansuy JM, Pasquier C, Daudin M, et al. Zika virus in semen of a patient returning from a non-epidemic area. Lancet Infect Dis. 2016;16:894–895.
  • Mansuy JM, Dutertre M, Mengelle C, et al. Zika virus: high infectious viral load in semen, a new sexually transmitted pathogen? Lancet Infect Dis. 2016;16:405.
  • García-Closas M, Herrero R, Bratti C, et al. Epidemiologic determinants of vaginal pH. Am J Obstet Gynecol. 1999;180:1060–1066.
  • Thinkhamrop J, Lumbiganon P, Thongkrajai P, et al. Vaginal fluid pH as a screening test for vaginitis. Int J Gynaecol Obstet. 1999;66:143–148.
  • Harraway C, Berger NG, Dubin NH. Semen pH in patients with normal versus abnormal sperm characteristics. Am J Obstet Gynecol. 2000;182:1045–1047.
  •  Masters WH, Johnson VE. The physiology of the vaginal reproductive function. West J Surg Obstet Gynecol. 1961;69:105–120.
  • Bouvet J-P, Grésenguet G, Bélec L. Vaginal pH neutralization by semen as a cofactor of HIV transmission. Clin Microbiol Infect. 1997;3:19–23.
  •  Zhang X, Shi J, Ye X, et al. Coxsackievirus A16 utilizes cell surface heparan sulfate glycosaminoglycans as its attachment receptor. Emerg Microbes Infect. 2017;6:e65.
  • Sasaki M, Anindita PD, Ito N, et al. The role of heparan sulfate proteoglycans as an attachment factor for rabies virus entry and infection. J Infect Dis. 2018;217:1740–1749.
  • Feldman SA, Audet S, Beeler JA. The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. J Virol. 2000;74:6442–6447.
  • Tan CW, Poh CL, Sam I-C, et al. Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol. 2013;87:611–620.
  • Tanaka A, Tumkosit U, Nakamura S, et al. Genome-wide screening uncovers the significance of N-sulfation of heparan sulfate as a host cell factor for Chikungunya virus infection. J Virol. 2017;91; doi:https://doi.org/10.1128/JVI.00432-17.
  • Byrnes AP, Griffin DE. Binding of Sindbis virus to cell surface heparan sulfate. J Virol. 1998;72:7349–7356.
  • Fry EE, Lea SM, Jackson T, et al. The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J. 1999;18:543–554.
  • Smit JM, Waarts B-L, Kimata K, et al. Adaptation of alphaviruses to heparan sulfate: interaction of Sindbis and Semliki forest viruses with liposomes containing lipid-conjugated heparin. J Virol. 2002;76:10128–10137.
  • Yura Y, Iga H, Kondo Y, et al. Heparan sulfate as a mediator of herpes simplex virus binding to basement membrane. J Invest Dermatol. 1992;98:494–498.
  • Chen H-L, Her S-Y, Huang K-C, et al. Identification of a heparin binding peptide from the Japanese encephalitis virus envelope protein. Biopolymers. 2010;94:331–338.
  • Germi R, Crance J-M, Garin D, et al. Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology. 2002;292:162–168.
  • Kim SY, Zhao J, Liu X, et al. Interaction of Zika virus envelope protein with glycosaminoglycans. Biochemistry. 2017;56:1151–1162.
  • Kim SY, Koetzner CA, Payne AF, et al. Glycosaminoglycan compositional analysis of relevant tissues in Zika virus pathogenesis and in vitro evaluation of heparin as an Antiviral against Zika virus infection. Biochemistry. 2019;58:1155–1166.
  • Tan CW, Sam I-C, Chong WL, et al. Polysulfonate suramin inhibits Zika virus infection. Antiviral Res. 2017;143:186–194.
  • Gao H, Lin Y, He J, et al. Role of heparan sulfate in the Zika virus entry, replication, and cell death. Virology. 2019;529:91–100.
  • Villordo SM, Filomatori CV, Sánchez-Vargas I, et al. Dengue virus RNA structure specialization facilitates host adaptation. PLoS Pathog. 2015;11:e1004604.
  • Grivel J-C, Margolis L. Use of human tissue explants to study human infectious agents. Nat Protoc. 2009;4:256–269.
  • Baeuerle PA, Huttner WB. Chlorate–a potent inhibitor of protein sulfation in intact cells. Biochem Biophys Res Commun. 1986;141:870–877.
  • Chow S, Hedley D, Tannock I. Flow cytometric calibration of intracellular pH measurements in viable cells using mixtures of weak acids and bases. Cytometry. 1996;24:360–367.
  • Russell CJ, Hu M, Okda FA. Influenza hemagglutinin protein stability, activation, and pandemic risk. Trends Microbiol. 2018;26:841–853.
  • Kampmann T, Mueller DS, Mark AE, et al. The role of histidine residues in low-pH-mediated viral membrane fusion. Structure. 2006;14:1481–1487.
  • Weed DJ, Pritchard SM, Gonzalez F, et al. Mildly acidic pH triggers an irreversible conformational change in the fusion domain of herpes simplex virus 1 glycoprotein B and inactivation of viral entry. J Virol. 2017;91(5):e02123-16. Published 2017 Feb 14. doi:https://doi.org/10.1128/JVI.02123-16.
  • Dantas E, Erra Díaz F, Pereyra Gerber P, et al. Histidine-Rich glycoprotein inhibits HIV-1 infection in a pH-dependent manner. J Virol. 2019 Feb 5;93(4):e01749-18. doi:https://doi.org/10.1128/JVI.01749-18. PMID: 30518643; PMCID: PMC6363989.
  • Dalrymple N, Mackow ER. Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J Virol. 2011;85:9478–9485.
  • Nickells J, Cannella M, Droll DA, et al. Neuroadapted yellow fever virus strain 17D: a charged locus in domain III of the E protein governs heparin binding activity and neuroinvasiveness in the SCID mouse model. J Virol. 2008;82:12510–12519.
  • Lee E, Lobigs M. Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol. 2002;76:4901–4911.
  • Ceballos A, Remes Lenicov F, Sabatté J, et al. Spermatozoa capture HIV-1 through heparan sulfate and efficiently transmit the virus to dendritic cells. J Exp Med. 2009;206:2717–2733.
  • Lancaster C, Pristatsky P, Hoang VM, et al. Characterization of N-glycosylation profiles from mammalian and insect cell derived chikungunya VLP. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1032:218–223.
  • Müller JA, Harms M, Schubert A, et al. Inactivation and environmental stability of Zika virus. Emerging Infect Dis. 2016;22:1685–1687.
  • Hamel R, Dejarnac O, Wichit S, et al. Biology of Zika virus infection in human skin cells. J Virol. 2015;89:8880–8896.
  • Miner JJ, Diamond MS. Zika virus pathogenesis and tissue tropism. Cell Host Microbe. 2017;21:134–142.
  • Goodfellow IG, Sioofy AB, Powell RM, et al. Echoviruses bind heparan sulfate at the cell surface. J Virol. 2001;75:4918–4921.
  • Riblett AM, Blomen VA, Jae LT, et al. A haploid genetic screen identifies heparan sulfate proteoglycans supporting rift valley fever virus infection. J Virol. 2016;90:1414–1423.
  • Clausen TM, Sandoval DR, Spliid CB, et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell. 2020;183:1043–1057.
  • Modis Y, Ogata S, Clements D, et al. Structure of the dengue virus envelope protein after membrane fusion. Nature. 2004;427:313–319.
  • González-Iglesias R, Pajares MA, Ocal C, et al. Prion protein interaction with glycosaminoglycan occurs with the formation of oligomeric complexes stabilized by Cu(II) bridges. J Mol Biol. 2002;319:527–540.
  • Wu C, Wang S. A pH-sensitive heparin-binding sequence from baculovirus gp64 protein is important for binding to mammalian cells but not to Sf9 insect cells. J Virol. 2012;86:484–491.
  • Wettreich A, Sebollela A, Carvalho MA, et al. Acidic pH modulates the interaction between human granulocyte-macrophage colony-stimulating factor and glycosaminoglycans. J Biol Chem. 1999;274:31468–31475.
  • Arteel GE, Franken S, Kappler J, et al. Binding of selenoprotein P to heparin: characterization with surface plasmon resonance. Biol Chem. 2000;381:265–268.
  • Goerges AL, Nugent MA. Regulation of vascular endothelial growth factor binding and activity by extracellular pH. J Biol Chem. 2003;278:19518–19525.
  • Gupta-Bansal R, Frederickson RC, Brunden KR. Proteoglycan-mediated inhibition of a beta proteolysis. A potential cause of senile plaque accumulation. J Biol Chem. 1995;270:18666–18671.
  • Sun J, Li Y, Liu P, et al. Study of the mechanism of protonated histidine-induced conformational changes in the Zika virus dimeric envelope protein using accelerated molecular dynamic simulations. J Mol Graph Model. 2017;74:203–214.