2,947
Views
3
CrossRef citations to date
0
Altmetric
Influenza Infections

Intra-species sialic acid polymorphism in humans: a common niche for influenza and coronavirus pandemics?

, , , &
Pages 1191-1199 | Received 30 Mar 2021, Accepted 18 May 2021, Published online: 14 Jun 2021

References

  • Taubenberger JK. The origin and virulence of the 1918 “Spanish” influenza virus. Proc Am Philos Soc. 2006;150(1):86–112.
  • Taubenberger JK, Morens DM. Influenza viruses: breaking all the rules. mBio. 2013;4(4):e00365-13. Doi:https://doi.org/10.1128/mBio.00365-13.
  • Taubenberger JK, Morens DM, Fauci AS. The next influenza pandemic: can it be predicted? JAMA. 2007;297(18):2025–2027.
  • Morens DM, Fauci AS. The 1918 influenza pandemic: insights for the 21st century. J Infect Dis. 2007;195(7):1018–1028.
  • Morens DM, Taubenberger JK, Fauci AS. Pandemic influenza viruses–hoping for the road not taken. N Engl J Med. 2013;368(25):2345–2348.
  • Morens DM, Taubenberger JK. Making universal influenza vaccines: lessons from the 1918 pandemic. J Infect Dis. 2019;219(Suppl_1):S5–S13. Doi:https://doi.org/10.1093/infdis/jiy728.
  • Reid AH, Fanning TG, Hultin JV, et al. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc Natl Acad Sci USA. 1999;96(4):1651–1656.
  • Sheng Z-M, Chertow DS, Ambroggio X, et al. Autopsy series of 68 cases dying before and during the 1918 influenza pandemic peak. Proc Natl Acad Sci USA. 2011;108(39):16416–16421.
  • Reid AH, Janczewski TA, Lourens RM, et al. 1918 influenza pandemic caused by highly conserved viruses with two receptor-binding variants. Emerging Infect Dis. 2003;9(10):1249–1253.
  • Kunkel F, Herrler G. Structural and functional analysis of the surface protein of human coronavirus OC43. Virology. 1993;195(1):195–202.
  • Li W, Hulswit RJG, Widjaja I, et al. Identification of sialic acid-binding function for the middle east respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci USA. 2017;114(40):E8508–E8517.
  • Tortorici MA, Walls AC, Lang Y, et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol. 2019;26(6):481–489.
  • Gagneux P, Cheriyan M, Hurtado-Ziola N, et al. Human-specific regulation of alpha 2-6-linked sialic acids. J Biol Chem. 2003;278(48):48245–48250.
  • Snyder MH, Stephenson EH, Young H, et al. Infectivity and antigenicity of live avian-human influenza A reassortant virus: comparison of intranasal and aerosol routes in squirrel monkeys. J Infect Dis. 1986;154(4):709–711.
  • Smith GJD, Bahl J, Vijaykrishna D, et al. Dating the emergence of pandemic influenza viruses. Proc Natl Acad Sci USA. 2009;106(28):11709–11712.
  • Tan M, Cui L, Huo X, et al. Saliva as a source of reagent to study human susceptibility to avian influenza H7N9 virus infection. Emerg Microbes Infect. 2018;7(1):156.
  • Huang P, Farkas T, Zhong W, et al. Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J Virol. 2005;79(11):6714–6722.
  • Huang P, Farkas T, Marionneau S, et al. Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J Infect Dis. 2003;188(1):19–31.
  • Marionneau S, Cailleau-Thomas A, Rocher J, et al. ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie. 2001;83(7):565–573.
  • Taubenberger JK, Hultin JV, Morens DM. Discovery and characterization of the 1918 pandemic influenza virus in historical context. Antivir Ther. 2007;12(4 Pt B):581–591.
  • Taubenberger JK, Morens DM. 1918 influenza: the mother of all pandemics. Emerging Infect Dis. 2006;12(1):15–22.
  • Viboud C, Eisenstein J, Reid AH, et al. Age- and sex-specific mortality associated with the 1918–1919 influenza pandemic in Kentucky. J Infect Dis. 2013;207(5):721–729.
  • Worobey M, Han GZ, Rambaut A. Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus. Proc Natl Acad Sci USA. 2014;111(22):8107–8112.
  • Chan PKS, Lee N, Joynt GM, et al. Clinical and virological course of infection with haemagglutinin D222G mutant strain of 2009 pandemic influenza A (H1N1) virus. J Clin Virol. 2011;50(4):320–324.
  • Piralla A, Pariani E, Giardina F, et al. Molecular characterization of influenza strains in patients admitted to intensive care units during the 2017–2018 season. Int J Mol Sci. 2019;20(11):2664. Doi:https://doi.org/10.3390/ijms20112664.
  • Liu Y, Childs RA, Matrosovich T, et al. Altered receptor specificity and cell tropism of D222G hemagglutinin mutants isolated from fatal cases of pandemic A(H1N1) 2009 influenza virus. J Virol. 2010;84(22):12069–12074.
  • Memoli MJ, Bristol T, Proudfoot KE, et al. In vivo evaluation of pathogenicity and transmissibility of influenza A(H1N1)pdm09 hemagglutinin receptor binding domain 222 intrahost variants isolated from a single immunocompromised patient. Virology. 2012;428(1):21–29.
  • Henry C, Palm AKE, Krammer F, et al. From original antigenic sin to the universal influenza virus vaccine. Trends Immunol. 2018;39(1):70–79.
  • Ranjeva S, Subramanian R, Fang VJ, et al. Age-specific differences in the dynamics of protective immunity to influenza. Nat Commun. 2019;10(1):1660.
  • Zhang A, Stacey HD, Mullarkey CE, et al. Original antigenic sin: how first exposure shapes lifelong anti-influenza virus immune responses. J Immunol. 2019;202(2):335–340.
  • Huang X, Dong W, Milewska A, et al. Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme. J Virol. 2015;89(14):7202–7213.
  • Hulswit RJG, Lang Y, Bakkers MJG, et al. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proc Natl Acad Sci USA. 2019;116(7):2681–2690.
  • Vlasak R, Luytjes W, Spaan W, et al. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci USA. 1988;85(12):4526–4529.
  • Sun X, Belser JA, Pappas C, et al. Risk assessment of fifth-wave H7N9 influenza A viruses in mammalian models. J Virol. 2018;93(1):e01740-18. Doi:https://doi.org/10.1128/JVI.01740-18.
  • Baker AN, Richards S-J, Guy CS, et al. The SARS-COV-2 spike protein binds sialic acids and enables rapid detection in a lateral flow point of care diagnostic device. ACS Cent Sci. 2020;6(11):2046–2052.
  • Awasthi M, Gulati S, Sarkar DP, et al. The sialoside-binding pocket of SARS-CoV-2 spike glycoprotein structurally resembles MERS-CoV. Viruses. 2020;12(9):909. Doi:https://doi.org/10.3390/v12090909.
  • Petrosillo N, Viceconte G, Ergonul O, et al. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020;26(6):729–734.
  • Benvenuto D, Giovanetti M, Ciccozzi A, et al. The 2019-new coronavirus epidemic: evidence for virus evolution. J Med Virol. 2020;92(4):455–459.
  • Park Y-J, Walls AC, Wang Z, et al. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nat Struct Mol Biol. 2019;26(12):1151–1157.
  • Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell. 2021;184(7):1671–1692.
  • Varki A. Sialic acids in human health and disease. Trends Mol Med. 2008;14(8):351–360.
  • Varki A. Nothing in glycobiology makes sense, except in the light of evolution. Cell. 2006;126(5):841–845.
  • Kim CH. SARS-CoV-2 evolutionary adaptation toward host entry and recognition of receptor O-Acetyl sialylation in virus-host interaction. Int J Mol Sci. 2020;21(12):4549. Doi:https://doi.org/10.3390/ijms21124549.
  • Schauer R. Sialic acids: fascinating sugars in higher animals and man. Zoology. 2004;107(1):49–64.