2,417
Views
3
CrossRef citations to date
0
Altmetric
Ebola

Distinct transcriptional responses to fatal Ebola virus infection in cynomolgus and rhesus macaques suggest species-specific immune responses

, , ORCID Icon & ORCID Icon
Pages 1320-1330 | Received 24 Mar 2021, Accepted 07 Jun 2021, Published online: 01 Jul 2021

References

  • Rivera A, Messaoudi I. Molecular mechanisms of Ebola pathogenesis. J. Leukoc. Biol. 2016;100:889–904.
  • Pinski AN, Messaoudi I. To B or Not to B: mechanisms of protection conferred by rVSV-EBOV-GP and the roles of innate and adaptive immunity. Microorganisms. 2020;8(10):1473.
  • Coltart CEM, Lindsey B, Ghinai I, et al. The Ebola outbreak, 2013–2016: old lessons for new epidemics. Philos. Trans. R. Soc. B Biol. Sci. 2017;372.
  • 2014-2016 Ebola Outbreak in West Africa | History | Ebola (Ebola Virus Disease) | CDC. Available from: https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/index.html.
  • 2020 Democratic Republic of the Congo, Equateur Province | Democratic Republic of Congo | Outbreaks | Ebola (Ebola Virus Disease) | CDC. Available from https://www.cdc.gov/vhf/ebola/outbreaks/drc/2020-june.html.
  • Geisbert TW, Young HA, Jahrling PB, et al. Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. Am. J. Pathol. 2003;163:2371–2382.
  • Geisbert TW, Hensley LE, Larsen T, et al. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am. J. Pathol. 2003;163:2347–2370.
  • Wahl-Jensen V, Kurz S, Feldmann F, et al. Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression. PLoS Negl. Trop. Dis. 2011;5:e1359.
  • Falasca L, Agrati C, Petrosillo N, et al. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death. Cell Death Differ. 2015;22:1250–1259.
  • Geisbert TW, Hensley LE, Gibb TR, et al. Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab. Investig. J. Tech. Methods Pathol. 2000;80:171–186.
  • Iampietro M, Younan P, Nishida A, et al. Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. PLOS Pathog. 2017;13:e1006397.
  • Menicucci AR, Versteeg K, Woolsey C, et al. Transcriptome analysis of Circulating immune cell subsets highlight the role of monocytes in Zaire Ebola Virus Makona pathogenesis. Front. Immunol. 2017;8:1372.
  • Younan P, Santos RI, Ramanathan P, et al. Ebola virus-mediated T-lymphocyte depletion is the result of an abortive infection. PLOS Pathog. 2019;15:e1008068.
  • Thom R, Tipton T, Strecker T, et al. Longitudinal antibody and T cell responses in Ebola virus disease survivors and contacts: an observational cohort study. Lancet Infect. Dis. 2020;21(4):507–516.
  • Sakabe S, Sullivan BM, Hartnett JN, et al. Analysis of CD8+ T cell response during the 2013–2016 Ebola epidemic in West Africa. Proc. Natl. Acad. Sci. 2018;115:E7578–E7586.
  • Baize S, Leroy EM, Georges AJ, et al. Inflammatory responses in Ebola virus-infected patients. Clin. Exp. Immunol. 2002;128:163–168.
  • McElroy AK, Erickson BR, Flietstra TD, et al. Ebola hemorrhagic fever: novel biomarker correlates of clinical outcome. J. Infect. Dis. 2014;210:558–566.
  • Villinger F, Rollin PE, Brar SS, et al. Markedly elevated levels of interferon (IFN)-gamma, IFN-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection. J Infect Dis 1999;179(Suppl 1):S188–S191.
  • Wauquier N, Becquart P, Padilla C, et al. Human fatal Zaire ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis. PLoS Negl. Trop. Dis. 2010;4(10):e837.
  • Sanchez A, Lukwiya M, Bausch D, et al. Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) hemorrhagic fever: cellular responses, virus load, and nitric oxide levels. J. Virol. 2004;78:10370–10377.
  • Gupta M, Spiropoulou C, Rollin PE. Ebola virus infection of human PBMCs causes massive death of macrophages, CD4 and CD8 T cell sub-populations in vitro. Virology. 2007;364:45–54.
  • Bennett RS, Huzella LM, Jahrling PB, et al. Nonhuman Primate Models of Ebola Virus disease. Curr. Top. Microbiol. Immunol. 2017;411:171–193.
  • Geisbert TW, Pushko P, Anderson K, et al. Evaluation in Nonhuman primates of vaccines against Ebola virus. Emerg Infect Dis 2002;8:503–507.
  • Bente D, Gren J, Strong JE, et al. Disease modeling for Ebola and Marburg viruses. Dis. Model. Mech. 2009;2:12–17.
  • Geisbert TW, Strong JE, Feldmann H. Considerations in the Use of Nonhuman Primate Models of Ebola Virus and Marburg virus infection. J. Infect. Dis. 2015;212(Suppl 2):S91–S97.
  • Marzi A, Chadinah S, Haddock E, et al. Recently identified mutations in the Ebola virus-Makona genome Do Not alter Pathogenicity in animal models. Cell Rep. 2018;23:1806–1816.
  • Marzi A, Feldmann F, Hanley PW, et al. Delayed disease progression in cynomolgus macaques infected with Ebola Virus Makona strain. Emerg. Infect. Dis. 2015;21:1777–1783.
  • Warren T, Zumbrun E, Weidner JM, et al. Characterization of Ebola Virus Disease (EVD) in Rhesus Monkeys for development of EVD therapeutics. Viruses. 2020;12(1):92.
  • Versteeg K, Menicucci AR, Woolsey C, et al. Infection with the Makona variant results in a delayed and distinct host immune response compared to previous Ebola virus variants. Sci. Rep. 2017;7:9730.
  • Marzi A, Robertson SJ, Haddock E, et al. VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain. Science. 2015;349:739–742.
  • Munster VJ, Feldmann F, Williamson BN, et al. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature. 2020;585:268–272.
  • Rockx B, Kuiken T, Herfst S, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368:1012–1015.
  • Haaft PT, Almond N, Biberfeld G, et al. Comparison of early plasma RNA loads in different macaque species and the impact of different routes of exposure on SIV/SHIV infection. J. Med. Primatol. 2001;30:207–214.
  • Skinner JA, Zurawski SM, Sugimoto C, et al. Immunologic characterization of a Rhesus Macaque H1N1 challenge model for candidate influenza virus vaccine assessment. Clin. Vaccine Immunol. CVI. 2014;21:1668–1680.
  • Marriott AC, Dennis M, Kane JA, et al. Influenza a virus challenge models in Cynomolgus Macaques using the authentic inhaled aerosol and intra-nasal routes of infection. PLoS ONE. 2016;11(6):e0157887.
  • Mooij P, Koopman G, Mortier D, et al. Pandemic swine-origin H1N1 influenza virus replicates to higher levels and induces more fever and acute inflammatory cytokines in Cynomolgus versus Rhesus monkeys and can replicate in common marmosets. PloS One. 2015;10:e0126132.
  • White TM, Mahalingam R, Traina-Dorge V, et al. Simian varicella virus DNA is present and transcribed months after experimental infection of adult African Green monkeys. J. Neurovirol. 2002;8:191–203.
  • White TM, Mahalingam R, Traina-Dorge V, et al. Persistence of simian varicella virus DNA in CD4(+) and CD8(+) blood mononuclear cells for years after intratracheal inoculation of African Green monkeys. Virology. 2002;303:192–198.
  • Messaoudi I, Barron A, Wellish M, et al. Simian varicella virus infection of rhesus macaques recapitulates essential features of varicella zoster virus infection in humans. PLoS Pathog. 2009;5(11):e1000657.
  • Mahalingam R, Messaoudi I, Gilden D. Simian varicella virus pathogenesis. Curr. Top. Microbiol. Immunol. 2010;342:309–321.
  • Reimann KA, Parker RA, Seaman MS, et al. Pathogenicity of simian-human immunodeficiency virus SHIV-89.6P and SIVmac is attenuated in cynomolgus macaques and associated with early T-lymphocyte responses. J. Virol. 2005;79:8878–8885.
  • Nueda MJ, Tarazona S, Conesa A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics. 2014;30:2598–2602.
  • Eisfeld AJ, Halfmann PJ, Wendler JP, et al. Multi-platform ‘omics analysis of human Ebola virus disease pathogenesis. Cell Host Microbe. 2017;22:817–829. e8.
  • Liu X, Speranza E, Muñoz-Fontela C, et al. Transcriptomic signatures differentiate survival from fatal outcomes in humans infected with Ebola virus. Genome Biol. 2017;18:4.
  • Kash JC, Walters K-A, Kindrachuk J, et al. Longitudinal peripheral blood transcriptional analysis of a patient with severe Ebola virus disease. Sci. Transl. Med. 2017;9(385):eaai9321.
  • Koch T, Rottstegge M, Ruibal P, et al. Ebola virus disease survivors show more efficient antibody immunity than vaccinees despite similar levels of circulating immunoglobulins. Viruses. 2020;12(9):915.
  • Speranza E, Ruibal P, Port JR, et al. T-Cell receptor diversity and the control of T-cell homeostasis mark Ebola virus disease survival in humans. J. Infect. Dis. 2018;218:S508–S518.
  • Ruibal P, Oestereich L, Lüdtke A, et al. Unique human immune signature of Ebola virus disease in Guinea. Nature. 2016;533:100–104.
  • Agrati C, Castilletti C, Casetti R, et al. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection. Cell Death Dis. 2016;7:e2164.
  • Wiedemann A, Foucat E, Hocini H, et al. Long-lasting severe immune dysfunction in Ebola virus disease survivors. Nat. Commun. 2020;11:3730.