2,212
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Naturally circulating pertactin-deficient Bordetella pertussis strains induce distinct gene expression and inflammatory signatures in human dendritic cells

, ORCID Icon, , , , , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 1358-1368 | Received 05 Mar 2021, Accepted 10 Jun 2021, Published online: 05 Jul 2021

References

  • Kilgore PE, Salim AM, Zervos MJ. Pertussis: microbiology, disease, treatment, and prevention. Clin Microbiol Rev. 2016 Jul;29(3):449–486.
  • Paddock CD, Sanden GN, Cherry JD, et al. Pathology and pathogenesis of fatal Bordetella pertussis infection in infants. Clin Infect Dis. 2008 Aug 1;47(3):328–338.
  • Locht C. Pertussis: where did we go wrong and what can we do about it? J Infect. 2016 Jul 5;72:S34–S40.
  • Ryan M, Murphy G, Ryan E, et al. Distinct T-cell subtypes induced with whole cell and acellular pertussis vaccines in children. Immunology. 1998 Jan;93(1):1–10.
  • van der Lee S, Hendrikx LH, Sanders EAM, et al. Whole-cell or acellular pertussis primary immunizations in infancy determines adolescent cellular immune profiles. Front Immunol. 2018;9:51.
  • Lesne E, Cavell BE, Freire-Martin I, et al. Acellular pertussis vaccines induce anti-pertactin bactericidal antibodies which drives the emergence of pertactin-negative strains [Original research]. Front Microbiol. 2020;11:2108.
  • Everest P, Li J, Douce G, et al. Role of the Bordetella pertussis P.69/pertactin protein and the P.69/pertactin RGD motif in the adherence to and invasion of mammalian cells. Microbiology. 1996;142(11):3261–3268.
  • Leininger E, Roberts M, Kenimer JG, et al. Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci USA. 1991;88(2):345–349.
  • Hovingh ES, Mariman R, Solans L, et al. Bordetella pertussis pertactin knock-out strains reveal immunomodulatory properties of this virulence factor. Emerg Microbes Infect. 2018 Mar 21;7(1):39.
  • McGuirk P, Mills KH. Direct anti-inflammatory effect of a bacterial virulence factor: IL-10-dependent suppression of IL-12 production by filamentous hemagglutinin from Bordetella pertussis. Eur J Immunol. 2000 Feb;30(2):415–422.
  • Hellwig SM, Rodriguez ME, Berbers GA, et al. Crucial role of antibodies to pertactin in Bordetella pertussis immunity. J Infect Dis. 2003 Sep 1;188(5):738–742.
  • Hendrikx LH, Berbers GA, Veenhoven RH, et al. Igg responses after booster vaccination with different pertussis vaccines in Dutch children 4 years of age: effect of vaccine antigen content. Vaccine. 2009 Nov 5;27(47):6530–6536.
  • Barkoff A-M, Mertsola J, Pierard D, et al. Pertactin-deficient Bordetella pertussis isolates: evidence of increased circulation in Europe, 1998 to 2015. Eurosurveillance. 2019;24:7.
  • Lam C, Octavia S, Ricafort L, et al. Rapid increase in pertactin-deficient Bordetella pertussis isolates, Australia. Emerg Infect Dis. 2014 Apr;20(4):626–633.
  • Martin SW, Pawloski L, Williams M, et al. Pertactin-negative Bordetella pertussis strains: evidence for a possible selective advantage. Clin Infect Dis. 2015 Jan 15;60(2):223–227.
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006 Feb 24;124(4):783–801.
  • Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.
  • Pulendran B, Li S, Nakaya HI. Systems vaccinology. Immunity. 2010 Oct 29;33(4):516–529.
  • Raeven RHM, van Riet E, Meiring HD, et al. Systems vaccinology and big data in the vaccine development chain. Immunology. 2019 Jan;156(1):33–46.
  • Kroes MM, Mariman R, Hijdra D, et al. Activation of human NK cells by Bordetella pertussis requires inflammasome activation in macrophages. Front Immunol. 2019;10:2030.
  • Hovingh ES, van Gent M, Hamstra HJ, et al. Emerging Bordetella pertussis strains induce enhanced signaling of human pattern recognition receptors TLR2, NOD2 and secretion of IL-10 by dendritic cells. PLoS One. 2017;12(1):e0170027.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 Nov;13(11):2498–2504.
  • Li S, Rouphael N, Duraisingham S, et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol. 2014 Feb;15(2):195–204.
  • Gerritzen MJH, Martens DE, Uittenbogaard JP, et al. Sulfate depletion triggers overproduction of phospholipids and the release of outer membrane vesicles by Neisseria meningitidis. Sci Rep. 2019;9(1):4716.
  • Raeven RHM, van Vlies N, Salverda MLM, et al. The role of virulence proteins in protection conferred by Bordetella pertussis outer membrane vesicle vaccines. Vaccines (Basel). 2020 Jul 30;8:3.
  • Sticker A, Goeminne L, Martens L, et al. Robust summarization and inference in proteome-wide label-free quantification. Mol Cell Proteom. 2020;19(7):1209–1219.
  • Hedges LV. Distribution theory for glass's estimator of effect size and related estimators. J Educ Stat. 1981;6(2):107–128.
  • Cliff N. Dominance statistics: ordinal analyses to answer ordinal questions. Psychol Bull. 1993;114(3):494–509.
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–15550.
  • Bart MJ, Zeddeman A, van der Heide HG, et al. Complete genome sequences of Bordetella pertussis isolates B1917 and B1920, representing two predominant global lineages. Genome Announc. 2014 Dec 24;2:6.
  • Stefanelli P, Fazio C, Fedele G, et al. A natural pertactin deficient strain of Bordetella pertussis shows improved entry in human monocyte-derived dendritic cells. New Microbiol. 2009 Apr;32(2):159–166.
  • Wang Y, Wang Y, Liu B, et al. pdh modulate virulence through reducing stress tolerance and biofilm formation of Streptococcus suis serotype 2. Virulence. 2019 Dec;10(1):588–599.
  • Petráčková D, Farman MR, Amman F, et al. Transcriptional profiling of human macrophages during infection with Bordetella pertussis. RNA Biol. 2020 May;17(5):731–742.
  • Kovarik P, Castiglia V, Ivin M, et al. Type I interferons in bacterial infections: a balancing act. Front Immunol. 2016;7:652.
  • Boxx GM, Cheng G. The roles of type I interferon in bacterial infection. Cell Host Microbe. 2016 Jun 8;19(6):760–769.
  • Ardanuy J, Scanlon K, Skerry C, et al. Age-dependent effects of type I and type III IFNs in the pathogenesis of Bordetella pertussis infection and disease. J Immunol. 2020 Apr 15;204(8):2192–2202.
  • Wu V, Smith AA, You H, et al. Plasmacytoid dendritic cell-derived IFNα modulates Th17 differentiation during early Bordetella pertussis infection in mice. Mucosal Immunol. 2016;9(3):777–786.
  • Pearce EJ, Everts B. Dendritic cell metabolism. Nat Rev Immunol. 2015 Jan;15(1):18–29.
  • Bassinet L, Gueirard P, Maitre B. Role of adhesins and toxins in invasion of human tracheal epithelial cells by Bordetella pertussis. Infect Immun. 2000;68(4):1934–1941.
  • Vodzak J, Queenan AM, Souder E, et al. Clinical manifestations and molecular characterization of pertactin-deficient and pertactin-producing Bordetella pertussis in children, Philadelphia 2007–2014. Clin Infect Dis. 2017;64(1):60–66.
  • Hiramatsu Y, Miyaji Y, Otsuka N, et al. Significant decrease in pertactin-deficient Bordetella pertussis isolates, Japan. Emerg Infect Dis.. 2017;23(4):699–701.
  • Streefland M, van de Waterbeemd B, Happe H, et al. PAT for vaccines: the first stage of PAT implementation for development of a well-defined whole-cell vaccine against whooping cough disease. Vaccine. 2007;25(16):2994–3000.