2,665
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Genomic evolution and virulence association of Clostridioides difficile sequence type 37 (ribotype 017) in China

, ORCID Icon, , , , , , , ORCID Icon, , , , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1331-1345 | Received 22 Mar 2021, Accepted 10 Jun 2021, Published online: 01 Jul 2021

References

  • Martin JS, Monaghan TM, Wilcox MH. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol. 2016 Apr;13(4):206–216.
  • al-Barrak A, Embil J, Dyck B, et al. An outbreak of toxin A negative, toxin B positive Clostridium difficile-associated diarrhea in a Canadian tertiary-care hospital. Can Commun Dis Rep. 1999 Apr 1;25(7):65–69.
  • Riegler M, Sedivy R, Pothoulakis C, et al. Clostridium difficile toxin B is more potent than toxin A in damaging human colonic epithelium in vitro. J Clin Invest. 1995 May;95(5):2004–2011.
  • Collins DA, Hawkey PM, Riley TV. Epidemiology of Clostridium difficile infection in Asia. Antimicrob Resist Infect Control. 2013 Jul 1;2(1):21.
  • Drudy D, Harnedy N, Fanning S, et al. Emergence and control of fluoroquinolone-resistant, toxin A-negative, toxin B-positive Clostridium difficile. Infect Control Hosp Epidemiol. 2007 Aug;28(8):932–940.
  • Du P, Cao B, Wang J, et al. Sequence variation in tcdA and tcdB of Clostridium difficile: ST37 with truncated tcdA is a potential epidemic strain in China. J Clin Microbiol. 2014 Sep;52(9):3264–3270.
  • Kim J, Kim Y, Pai H. Clinical characteristics and treatment outcomes of Clostridium difficile infections by PCR Ribotype 017 and 018 strains. PLoS One. 2016;11(12):e0168849.
  • Goorhuis A, Debast SB, Dutilh JC, et al. Type-specific risk factors and outcome in an outbreak with 2 different Clostridium difficile types simultaneously in 1 hospital. Clin Infect Dis. 2011 Nov;53(9):860–869.
  • Arvand M, Hauri AM, Zaiss NH, et al. Clostridium difficile ribotypes 001, 017, and 027 are associated with lethal C. difficile infection in Hesse, Germany. Euro Surveill. 2009 Nov 12;14(45):19403.
  • Jin D, Luo Y, Huang C, et al. Molecular epidemiology of Clostridium difficile infection in hospitalized patients in eastern China. J Clin Microbiol. 2017 Mar;55(3):801–810.
  • Imwattana K, Knight DR, Kullin B, et al. Clostridium difficile ribotype 017 - characterization, evolution and epidemiology of the dominant strain in Asia. Emerg Microbes Infect. 2019;8(1):796–807.
  • Alfa MJ, Kabani A, Lyerly D, et al. Characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile responsible for a nosocomial outbreak of Clostridium difficile-associated diarrhea. J Clin Microbiol. 2000 Jul;38(7):2706–14.
  • Tang C, Cui L, Xu Y, et al. The incidence and drug resistance of Clostridium difficile infection in Mainland China: a systematic review and meta-analysis. Sci Rep. 2016 Nov 29;6:37865.
  • Knight DR, Elliott B, Chang BJ, et al. Diversity and evolution in the genome of Clostridium difficile. Clin Microbiol Rev. 2015 Jul;28(3):721–741.
  • Knight DR, Kullin B, Androga GO, et al. Evolutionary and genomic insights into Clostridioides difficile sequence type 11: a diverse zoonotic and antimicrobial-resistant lineage of global one health importance. MBio. 2019 Apr 16;10(2):e00446-19.
  • Dingle KE, Didelot X, Quan TP, et al. A role for tetracycline selection in recent evolution of agriculture-associated Clostridium difficile PCR Ribotype 078. mBio. 2019 Mar 12;10(2):e02790-18.
  • He M, Miyajima F, Roberts P, et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 2013 Jan;45(1):109–113.
  • Cairns MD, Preston MD, Hall CL, et al. Comparative genome analysis and global phylogeny of the toxin variant Clostridium difficile PCR Ribotype 017 reveals the evolution of Two independent sublineages. J Clin Microbiol. 2017 Mar;55(3):865–876.
  • Wang L, Luo Y, Huang C, et al. Coinfection with 2 Clostridium difficile ribotypes in China: A case report. Medicine (Baltimore). 2018 Mar;97(13):e9946.
  • Luo Y, Cheong E, Bian Q, et al. Different molecular characteristics and antimicrobial resistance profiles of Clostridium difficile in the Asia-Pacific region. Emerg Microbes Infect. 2019;8(1):1553–1562.
  • Huang B, Jin D, Zhang J, et al. Real-time cellular analysis coupled with a specimen enrichment accurately detects and quantifies Clostridium difficile toxins in stool. J Clin Microbiol. 2014 Apr;52(4):1105–1111.
  • Ryder AB, Huang Y, Li H, et al. Assessment of Clostridium difficile infections by quantitative detection of tcdB toxin by use of a real-time cell analysis system. J Clin Microbiol. 2010 Nov;48(11):4129–4134.
  • Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol. 2010 May;31(5):431–455.
  • Crobach MJ, Dekkers OM, Wilcox MH, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI). Clin Microbiol Infect. 2009 Dec;15(12):1053–1066.
  • Stabler RA, He M, Dawson L, et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 2009;10(9):R102.
  • Preston MD, Assefa SA, Ocholla H, et al. Plasmoview: a web-based resource to visualise global Plasmodium falciparum genomic variation. J Infect Dis. 2014 Jun 1;209(11):1808–1815.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014 Aug 1;30(15):2114–2120.
  • Croucher NJ, Page AJ, Connor TR, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015 Feb 18;43(3):e15.
  • Xie C, Mao X, Huang J, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316–W322. http://www.genome.jp/kegg/.
  • Ai C, Kong L. CGPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways. J Genet Genomics. 2018 Sep 20;45(9):489–504. http://www.genome.jp/kegg/.
  • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078–2079.
  • Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014 May 1;30(9):1312–1313.
  • Bouckaert R, Heled J, Kühnert D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014 Apr;10(4):e1003537.
  • Drummond AJ, Suchard MA, Xie D, et al. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012 Aug;29(8):1969–1973.
  • Dingle KE, Elliott B, Robinson E, et al. Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biol Evol. 2014 Jan;6(1):36–52.
  • Roberts AP, Mullany P. A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol. 2009 Jun;17(6):251–258.
  • Mullany P, Allan E, Roberts AP. Mobile genetic elements in Clostridium difficile and their role in genome function. Res Microbiol. 2015 May;166(4):361–367.
  • Clinical and Laboratory Standards Institute (CLSI). Wayne P. Performance standards for antimicrobial susceptibility testing of anaerobic bacteria. 2017. M11-A8 p.
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012 Mar;18(3):268–281.
  • Qin J, Dai Y, Ma X, et al. Nosocomial transmission of Clostridium difficile genotype ST81 in a general teaching Hospital in China traced by whole genome sequencing. Sci Rep. 2017 Aug 29;7(1):9627.
  • Antunes A, Martin-Verstraete I, Dupuy B. CcpA-mediated repression of Clostridium difficile toxin gene expression. Mol Microbiol. 2011 Feb;79(4):882–899.
  • Haynes W. Benjamini–Hochberg method. In: Dubitzky W, Wolkenhauer O, Cho K-H, et al. editors. Encyclopedia of systems biology. New York (NY): Springer New York; 2013. p. 78.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001 Dec;25(4):402–408.
  • Antunes A, Camiade E, Monot M, et al. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Nucleic Acids Res. 2012 Nov;40(21):10701–10718.
  • Daou N, Wang Y, Levdikov VM, et al. Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027. PLoS One. 2019;14(1):e0206896.
  • Elliott B, Squire MM, Thean S, et al. New types of toxin A-negative, toxin B-positive strains among clinical isolates of Clostridium difficile in Australia. J Med Microbiol. 2011 Aug;60(Pt 8):1108–1111.
  • Yan Q, Zhang J, Chen C, et al. Multilocus sequence typing (MLST) analysis of 104 Clostridium difficile strains isolated from China. Epidemiol Infect. 2013 Jan;141(1):195–199.
  • Chen YB, Gu SL, Wei ZQ, et al. Molecular epidemiology of Clostridium difficile in a tertiary hospital of China. J Med Microbiol. 2014 Apr;63(Pt 4):562–569.
  • He M, Sebaihia M, Lawley TD, et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7527–7532.
  • Huang H, Weintraub A, Fang H, et al. Antimicrobial susceptibility and heteroresistance in Chinese Clostridium difficile strains. Anaerobe. 2010 Dec;16(6):633–635.
  • Tariq R, Cho J, Kapoor S, et al. Low risk of primary Clostridium difficile infection With tetracyclines: a systematic review and metaanalysis. Clin Infect Dis. 2018 Feb 1;66(4):514–522.
  • Larkin R. Side-effects of tetracycline alone and of tetracycline with nystatin. Lancet. 1959 Jun 13;1(7085):1228–1229.
  • Bouillaut L, Dubois T, Sonenshein AL, et al. Integration of metabolism and virulence in Clostridium difficile. Res Microbiol. 2015 May;166(4):375–383.
  • Mani N, Lyras D, Barroso L, et al. Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression. J Bacteriol. 2002 Nov;184(21):5971–5978.
  • Collins J, Robinson C, Danhof H, et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature. 2018 Jan 18;553(7688):291–294.
  • Rohmer L, Hocquet D, Miller SI. Are pathogenic bacteria just looking for food? metabolism and microbial pathogenesis. Trends Microbiol. 2011 Jul;19(7):341–348.
  • Zhu D, Sorg JA, Sun X. Clostridioides difficile biology: sporulation, germination, and corresponding therapies for C. difficile infection.. Front Cell Infect Microbiol. 2018;8:29.
  • Kumar N, Browne HP, Viciani E, et al. Adaptation of host transmission cycle during Clostridium difficile speciation. Nat Genet. 2019 Sep;51(9):1315–1320.
  • Nawrocki KL, Edwards AN, Daou N, et al. CodY-Dependent regulation of sporulation in Clostridium difficile. J Bacteriol. 2016 Aug 1;198(15):2113–2130.