2,776
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Comparative analysis of genomic characteristics, fitness and virulence of MRSA ST398 and ST9 isolated from China and Germany

, , , , , , , , , , & show all
Pages 1481-1494 | Received 20 May 2021, Accepted 29 Jun 2021, Published online: 22 Jul 2021

References

  • Fitzgerald JR. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol. 2012;20(4):192–198.
  • Chuang Y, Huang Y. Livestock-associated meticillin-resistant Staphylococcus aureus in Asia: an emerging issue? Int J Antimicrob Agents. 2015;45(4):334–340.
  • Butaye P, Argudín MA, Smith TC. Livestock-associated MRSA and its current evolution. Curr Clin Microbiol Rep. 2016;3(1):19–31.
  • Parisi A, Caruso M, Normanno G, et al. MRSA in swine, farmers and abattoir workers in southern Italy. Food Microbiol. 2019;82:287–293.
  • Li W, Liu J, Zhang X, et al. Emergence of methicillin-resistant Staphylococcus aureus ST398 in pigs in China. Int J Antimicrob Agents. 2018;51(2):275–276.
  • Price LB, Stegger M, Hasman H, et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. Mbio. 2012;3(1):e305–e311.
  • Larsen J, Clasen J, Hansen JE, et al. Copresence of tet(K) and tet(M) in livestock-associated methicillin-resistant Staphylococcus aureus clonal complex 398 is associated with increased fitness during exposure to sublethal concentrations of tetracycline. Antimicrob Agents Chemother. 2016;60(7):4401–4403.
  • Larsen J, Petersen A, Larsen AR, et al. Emergence of livestock-associated methicillin-resistant Staphylococcus aureus bloodstream infections in Denmark. Clin Infect Dis. 2017;65(7):1072–1076.
  • Murra M, Mortensen KL, Wang M. Livestock-associated methicillin-resistant Staphylococcus aureus (clonal complex 398) causing bacteremia and epidural abscess. Int J Infect Dis. 2019;81:107–109.
  • Larsen J, Petersen A, Sorum M, et al. Meticillin-resistant Staphylococcus aureus CC398 is an increasing cause of disease in people with no livestock contact in Denmark, 1999 to 2011. Euro Surveill. 2015;20(37):10.2807.
  • Zhou W, Li X, Osmundson T, et al. WGS analysis of ST9-MRSA-XII isolates from live pigs in China provides insights into transmission among porcine, human and bovine hosts. J Antimicrob Chemother. 2018;73(10):2652–2661.
  • Yan X, Li Z, Chlebowicz MA, et al. Genetic features of livestock-associated Staphylococcus aureus ST9 isolates from Chinese pigs that carry the lsa(E) gene for quinupristin/dalfopristin resistance. Int J Med Microbiol. 2016;306(8):722–729.
  • Wu Z, Li F, Liu D, et al. Novel type XII staphylococcal cassette chromosome mec harboring a new cassette chromosome recombinase, CcrC2. Antimicrob Agents Chemother. 2015;59(12):7597–7601.
  • Jin Y, Yu X, Chen Y, et al. Characterization of highly virulent community-associated methicillin-resistant Staphylococcus aureus ST9-SCCmec XII causing bloodstream infection in China. Emerg Microbes Infec. 2020;9(1):2526–2535.
  • Viana D, Blanco J, Tormo-Más MA, et al. Adaptation of Staphylococcus aureus to ruminant and equine hosts involves SaPI-carried variants of von Willebrand factor-binding protein. Mol Microbiol. 2010;77(6):1583–1594.
  • Sakwinska O, Giddey M, Moreillon M, et al. Staphylococcus aureus host range and human-bovine host shift. Appl Environ Microb. 2011;77(17):5908.
  • Ellington MJ, Hope R, Livermore DM, et al. Decline of EMRSA-16 amongst methicillin-resistant Staphylococcus aureus causing bacteraemias in the UK between 2001 and 2007. J Antimicrob Chemother. 2010;65(3):446–448.
  • Li S, Jedrzejas MJ. Hyaluronan binding and degradation by Streptococcus agalactiae hyaluronate lyase. J Biol Chem. 2001;276(44):41407–41416.
  • Chen C, Lauderdale TY, Lu C, et al. Clinical and molecular features of MDR livestock-associated MRSA ST9 with staphylococcal cassette chromosome mecXII in humans. J Antimicrob Chemother. 2018;73(1):33–40.
  • Neela V, Mohd Zafrul A, Mariana NS, et al. Prevalence of ST9 methicillin-resistant Staphylococcus aureus among pigs and pig handlers in Malaysia. J Clin Microbiol. 2009;47(12):4138–4140.
  • Larsen J, Imanishi M, Hinjoy S, et al. Methicillin-resistant Staphylococcus aureus ST9 in pigs in Thailand. Plos One. 2012;7(2):e31245.
  • Witte W, Strommenger B, Stanek C, et al. Methicillin-resistant Staphylococcus aureus ST398 in humans and animals, Central Europe. Emerg Infect Dis. 2007;13(2):255–258.
  • Grøntvedt CA, Elstrøm P, Stegger M, et al. Methicillin-Resistant Staphylococcus aureus CC398 in humans and pigs in Norway: a “One health” perspective on introduction and transmission. Clin Infect Dis. 2016;63(11):1431–1438.
  • Pirolo M, Sieber RN, Moodley A, et al. Local and transboundary transmissions of methicillin-resistant Staphylococcus aureus sequence type 398 through pig trading. Appl Environ Microb. 2020;86(13):e00430–20.
  • Lindsay JA. Staphylococcus aureus genomics and the impact of horizontal gene transfer. Int J Med Microbiol: IJMM. 2014;304(2):103–109.
  • Uhlemann A, Mcadam PR, Sullivan SB, et al. Evolutionary dynamics of pandemic methicillin-sensitive Staphylococcus aureus ST398 and its international spread via routes of human migration. Mbio. 2017;8(1):e1316–e1375.
  • Waldron DE, Lindsay JA. Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J Bacteriol. 2006;188(15):5578–5585.
  • Proksch E. Ph in nature, humans and skin. J Dermatol. 2018;45(9):1044–1052.
  • England RJ, Homer JJ, Knight LC, et al. Nasal pH measurement: a reliable and repeatable parameter. Clin Otolaryngol Allied Sci. 1999;24(1):67–68.
  • Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol. 2015;66(1):14–21.
  • Jantsch J, Schatz V, Friedrich D, et al. Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab. 2015;21(3):493–501.
  • Vogwill T, Maclean RC. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol Appl. 2015;8(3):284–295.
  • Krishnasamy V, Otte J, Silbergeld E. Antimicrobial use in Chinese swine and broiler poultry production. Antimicrob Resist Infect Control. 2015;4:17.
  • Zhang Q, Ying G, Pan C, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol. 2015;49(11):6772–6782.
  • Tahir S, Chowdhury D, Legge M, et al. Transmission of Staphylococcus aureus from dry surface biofilm (DSB) via different types of gloves. Infect Control Hosp Epidemiol. 2019;40(1):60–64.
  • Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol. 2017;104(3):365–376.
  • Tulinski P, Duim B, Wittink FR, et al. Staphylococcus aureus ST398 gene expression profiling during ex vivo colonization of porcine nasal epithelium. BMC Genomics. 2014;15(215):915.
  • Schijffelen MJ, Boel CHE, van Strijp JAG, et al. Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC Genomics. 2010;11:376.
  • Makris G, Wright JD, Ingham E, et al. The hyaluronate lyase of Staphylococcus aureus - a virulence factor? Microbiology (Reading). 2004;150(Pt 6):2005–2013.
  • Kadlec K, Ehricht R, Monecke S, et al. Diversity of antimicrobial resistance pheno- and genotypes of methicillin-resistant Staphylococcus aureus ST398 from diseased swine. J Antimicrob Chemother. 2009;64(6):1156–1164.
  • Li J, Jiang N, Ke Y, et al. Characterization of pig-associated methicillin-resistant Staphylococcus aureus. Vet Microbiol. 2017;201:183–187.
  • Inouye M, Dashnow H, Raven L, et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 2014;6(11):90.
  • Makarova O, Johnston P, Walther B, et al. Complete genome sequence of the livestock-associated methicillin-resistant strain Staphylococcus aureus subsp. aureus 08S00974 (Sequence Type 398). Genome Announc. 2017;5(19):e00294–17.
  • Page AJ, Cummins CA, Hunt M, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691–3693.
  • Haney EF, Trimble MJ, Hancock REW. Microtiter plate assays to assess antibiofilm activity against bacteria. Nat Protoc. 2021;16(5):2615–2632.
  • Richards RL, Haigh RD, Pascoe B, et al. Persistent Staphylococcus aureus isolates from two independent cases of bacteremia display increased bacterial fitness and novel immune evasion phenotypes. Infect Immun. 2015;83(8):3311–3324.
  • Malachowa N, Kobayashi SD, Braughton KR, et al. Mouse model of Staphylococcus aureus skin infection. Methods Mol Biol. 2013;1031:109–116.
  • Viana D, Blanco J, Tormo-Más MA, et al. Adaptation of Staphylococcus aureus to ruminant and equine hosts involves SaPI-carried variants of von Willebrand factor-binding protein. Mol Microbiol. 2010;77(6):1583–1594.
  • Gu T, Zhao S, Pi Y, et al. Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase. Chem Sci. 2018;9(12):3248–3253.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–428.