6,750
Views
13
CrossRef citations to date
0
Altmetric
Coronaviruses

Lentil lectin derived from Lens culinaris exhibit broad antiviral activities against SARS-CoV-2 variants

, , , , , , , , ORCID Icon, , & show all
Pages 1519-1529 | Received 24 Apr 2021, Accepted 16 Jul 2021, Published online: 01 Aug 2021

References

  • Daniloski Z, Jordan TX, Ilmain JK, et al. The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. eLife. 2021;10.
  • Li Q, Wu J, Nie J, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell. 2020;182(5):1284–1294. e9.
  • Greaney AJ, Starr TN, Gilchuk P, et al. Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. Cell Host Microbe. 2021;29(1):44–57. e9.
  • Kuzmina A, Khalaila Y, Voloshin O, et al. SARS-CoV-2 spike variants exhibit differential infectivity and neutralization resistance to convalescent or post-vaccination sera. Cell Host Microbe. 2021;29(4):522–528.
  • Weisblum Y, Schmidt F, Zhang F, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife. 2020;9.
  • Watanabe Y, Allen JD, Wrapp D, et al. Site-specific glycan analysis of the SARS-CoV-2 spike. Science (New York, NY). 2020;369(6501):330–333.
  • Zhang Y, Zhao W, Mao Y, et al. Site-specific N-glycosylation characterization of recombinant SARS-CoV-2 spike proteins. Mol Cell Proteomics. 2021;20:100058.
  • Guruprasad L. Human SARS CoV-2 spike protein mutations. Proteins. 2021;89(5):569–576.
  • Tsaneva M, Van Damme EJM. 130 years of plant lectin research. Glycoconj J. 2020;37(5):533–551.
  • Coves-Datson EM, King SR, Legendre M, et al. A molecularly engineered antiviral banana lectin inhibits fusion and is efficacious against influenza virus infection in vivo. Proc Natl Acad Sci USA. 2020;117(4):2122–2132.
  • Mitchell CA, Ramessar K, O'Keefe BR. Antiviral lectins: selective inhibitors of viral entry. Antiviral Res. 2017;142:37–54.
  • Swanson MD, Boudreaux DM, Salmon L, et al. Engineering a therapeutic lectin by uncoupling mitogenicity from antiviral activity. Cell. 2015;163(3):746–758.
  • Vankadari N, Wilce JA. Emerging wuhan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9(1):601–604.
  • Lee C. Griffithsin, a highly potent broad-spectrum antiviral lectin from Red algae: from discovery to clinical application. Mar Drugs. 2019;17(10):567.
  • Keyaerts E, Vijgen L, Pannecouque C, et al. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res. 2007;75(3):179–187.
  • Millet JK, Seron K, Labitt RN, et al. Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Res. 2016;133:1–8.
  • O'Keefe BR, Giomarelli B, Barnard DL, et al. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family coronaviridae. J Virol. 2010;84(5):2511–2521.
  • Watanabe Y, Berndsen ZT, Raghwani J, et al. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nat Commun. 2020;11(1):2688.
  • Liu YM, Shahed-Al-Mahmud M, Chen X, et al. A carbohydrate-binding protein from the edible lablab beans effectively blocks the infections of influenza viruses and SARS-CoV-2. Cell Rep. 2020;32(6):108016.
  • Kaltner H, Garcia Caballero G, Ludwig AK, et al. From glycophenotyping by (plant) lectin histochemistry to defining functionality of glycans by pairing with endogenous lectins. Histochem Cell Biol. 2018;149(6):547–568.
  • Roth J. Lectins for histochemical demonstration of glycans. Histochem Cell Biol. 2011;136(2):117–130.
  • Wu AM, Song SC, Tsai MS, et al. A guide to the carbohydrate specificities of applied lectins-2 (updated in 2000). Adv Exp Med Biol. 2001;491:551–585.
  • Bies C, Lehr CM, Woodley JF. Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev. 2004;56(4):425–435.
  • Kaneda Y, Whittier RF, Yamanaka H, et al. The high specificities of Phaseolus vulgaris erythro- and leukoagglutinating lectins for bisecting GlcNAc or beta 1-6-linked branch structures, respectively, are attributable to loop B. J Biol Chem. 2002;277(19):16928–16935.
  • Nie J, Li Q, Wu J, et al. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg Microbes Infect. 2020;9(1):680–686.
  • Ward D, Higgins M, Phelan JE, et al. An integrated in silico immuno-genetic analytical platform provides insights into COVID-19 serological and vaccine targets. Genome Med. 2021;13(1):4.
  • Gunther GR, Wang JL, Yahara I, et al. Concanavalin A derivatives with altered biological activities. Proc Natl Acad Sci USA. 1973;70(4):1012–1016.
  • Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. . Science (New York, NY). 2020;367(6483):1260–1263.
  • Chang D, Zaia J. Why glycosylation matters in building a better Flu vaccine. Mol Cell Proteomics. 2019;18(12):2348–2358.
  • Ge P, Ross TM. Evolution of A(H1N1) pdm09 influenza virus masking by glycosylation. Expert Rev Vaccines. 2021;20(5):519–526.
  • Joseph SB, Swanstrom R, Kashuba AD, et al. Bottlenecks in HIV-1 transmission: insights from the study of founder viruses. Nature Reviews. 2015;13(7):414–425.
  • Kosik I, Ince WL, Gentles LE, et al. Influenza A virus hemagglutinin glycosylation compensates for antibody escape fitness costs. PLoS Pathog. 2018;14(1):e1006796.
  • Wang W, Nie J, Prochnow C, et al. A systematic study of the N-glycosylation sites of HIV-1 envelope protein on infectivity and antibody-mediated neutralization. Retrovirology. 2013;10, 14.
  • Wang W, Zirkle B, Nie J, et al. N463 glycosylation site on V5 loop of a mutant gp120 regulates the sensitivity of HIV-1 to neutralizing Monoclonal antibodies VRC01/03. J Acquir Immune Defic Syndr. 2015;69(3):270-277.
  • Lee CD, Watanabe Y, Wu NC, et al. A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathog. 2021;17(3):e1009407.
  • McLellan JS, Pancera M, Carrico C, et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature. 2011;480(7377):336–343.
  • Zhou T, Zheng A, Baxa U, et al. A neutralizing antibody recognizing primarily N-linked glycan targets the silent face of the HIV envelope. Immunity. 2018;48(3):500–513. e6.
  • Arvin AM, Fink K, Schmid MA, et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature. 2020;584(7821):353–363.
  • Lee WS, Wheatley AK, Kent SJ, et al. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nature Microbiology. 2020;5(10):1185–1191.
  • Ricke DO. Two different antibody-dependent enhancement (ADE) risks for SARS-CoV-2 antibodies. Front Immunol. 2021;12:640093.
  • Zhou Y, Liu Z, Li S, et al. Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Rep. 2021;34(5):108699.
  • Uslupehlivan M, Sener E. Glycoinformatics approach for identifying target positions to inhibit initial binding of SARS-CoV-2 S1 protein to the host cell. bioRxiv. 2020. https://doi.org/10.1101/2020.03.25.007898.
  • Shajahan A, Supekar NT, Gleinich AS, et al. Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology. 2020;30(12):981–988.
  • Rahnama S, Irani MA, Amininasab M, et al. S494 O-glycosylation site on the SARS-COV-2 RBD affects the virus affinity to ACE2 and its infectivity; A molecular dynamics study. bioRxiv. 2020. https://doi.org/10.1101/2020.09.12.294504.
  • Ramirez HE, Hernandez-Zimbron LF, Martinez Zuniga N, et al. The role of the SARS-CoV-2 S-protein glycosylation in the interaction of SARS-CoV-2/ACE2 and immunological responses. Viral Immunol. 2021;34(3):165–173.
  • Gadanec LK, McSweeney KR, Qaradakhi T, et al. Can SARS-CoV-2 virus Use multiple receptors to enter host cells? Int J Mol Sci. 2021;22(3).
  • Frances-Monerris A, Hognon C, Miclot T, et al. Molecular basis of SARS-CoV-2 infection and rational design of potential antiviral agents: modeling and simulation approaches. J Proteome Res. 2020;19(11):4291–4315.