2,348
Views
3
CrossRef citations to date
0
Altmetric
Tuberculosis

Extremely lethal and hypervirulent Mycobacterium tuberculosis strain cluster emerging in Far East, Russia

, , , , , , , , , , , & ORCID Icon show all
Pages 1691-1701 | Received 15 Apr 2021, Accepted 09 Aug 2021, Published online: 22 Aug 2021

References

  • McDaniel MM, Krishna N, Handagama WG, et al. Quantifying limits on replication, death, and quiescence of Mycobacterium tuberculosis in mice. Front Microbiol. 2016;7:862. doi:https://doi.org/10.3389/fmicb.2016.00862.
  • Hernández-Pando R, Marquina-Castillo B, Barrios-Payán J, et al. Use of mouse models to study the variability in virulence associated with specific genotypic lineages of Mycobacterium tuberculosis. Infect Genet Evol. 2012;12:725–731.
  • Mokrousov I, Narvskaya O, Otten T, et al. Phylogenetic reconstruction within Mycobacterium tuberculosis Beijing genotype in northwestern Russia. Res Microbiol. 2002;153:629–637.
  • Ebrahimi-Rad M, Bifani P, Martin C, et al. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg Infect Dis. 2003;9:838–845.
  • Flores L, Van T, Narayanan S, et al. Large sequence polymorphisms classify Mycobacterium tuberculosis strains with ancestral spoligotyping patterns. J Clin Microbiol. 2007;45:3393–3395.
  • Dormans J, Burger M, Aguilar D, et al. Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different Mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clin Exp Immunol. 2004;137:460–468. doi:https://doi.org/10.1111/j.1365-2249.2004.02551.x.
  • Mourik BC, de Steenwinkel JEM, de Knegt GJ, et al. Mycobacterium tuberculosis clinical isolates of the Beijing and East-African Indian lineage induce fundamentally different host responses in mice compared to H37Rv. Sci Rep. 2019;9:19922. doi:https://doi.org/10.1038/s41598-019-56300-6.
  • Reiling N, Homolka S, Walter K, et al. Clade-specific virulence patterns of Mycobacterium tuberculosis complex strains in human primary macrophages and aerogenically infected mice. mBio. 2013;4:e00250–13. doi:https://doi.org/10.1128/mBio.00250-13.
  • Netikul T, Palittapongarnpim P, Thawornwattana Y, et al. Estimation of the global burden of Mycobacterium tuberculosis lineage 1. Infect Genet Evol. 2021;91:104802.
  • Ribeiro SC, Gomes LL, Amaral EP, et al. Mycobacterium tuberculosis strains of the modern sublineage of the Beijing family are more likely to display increased virulence than strains of the ancient sublineage. J Clin Microbiol. 2014;52:2615–2624. doi:https://doi.org/10.1128/JCM.00498-14.
  • Mokrousov I, Vyazovaya A, Pasechnik O, et al. Early ancient sublineages of Mycobacterium tuberculosis Beijing genotype: unexpected clues from phylogenomics of the pathogen and human history. Clin Microbiol Infect. 2019;25:1039.e1–1039.e6.
  • Zhdanova SN, Ogarkov OB, Savilov ED, et al. Molecular epidemiology of tuberculosis in northern Asia and its manifestations against the background of the HIV epidemic. Irkutsk: Irkutsk State Medical Academy of Postgraduate Education; 2019. 144 p.
  • Almeida FM, Ventura TL, Amaral EP, et al. Hypervirulent Mycobacterium tuberculosis strain triggers necrotic lung pathology associated with enhanced recruitment of neutrophils in resistant C57BL/6 mice. PLoS One. 2017;12:e0173715. doi:https://doi.org/10.1371/journal.pone.0173715.
  • Bespyatykh JA, Vinogradova ТI, Manicheva OA, et al. In vivo virulence of Beijing genotype Mycobacterium tuberculosis. Russ J Infect Immun. 2019;9:173–182. doi https://doi.org/10.15789/2220-7619-2019-1-173-182. (In Russian)
  • Mokrousov I, Sinkov V, Vyazovaya A, et al. Genomic signatures of drug resistance in highly resistant Mycobacterium tuberculosis strains of the early ancient sublineage of Beijing genotype in Russia. Int J Antimicrob Agents. 2020;56:106036.
  • Rules for working with laboratory rodents and rabbits. State standard GOST 33216-2014. Moscow: Standarinform; 2016.
  • Aleksandrova AE, Ariél’ BM. [Evaluation of the severity of tuberculous process in mouse lung]. Probl Tuberk. 1993;3:52–53. Russian.
  • Dong H, Lv Y, Sreevatsan S, et al. Differences in pathogenicity of three animal isolates of Mycobacterium species in a mouse model. PLoS ONE. 2017;12:e0183666.
  • Iwamoto T, Fujiyama R, Yoshida S, et al. Population structure dynamics of Mycobacterium tuberculosis Beijing strains during past decades in Japan. J Clin Microbiol. 2009;47:3340–3343. doi:https://doi.org/10.1128/JCM.01061-09.
  • Kato-Maeda M, Kim EY, Flores L, et al. Differences among sublineages of the East-Asian lineage of Mycobacterium tuberculosis in genotypic clustering. Int J Tuberc Lung Dis. 2010;14:538–544.
  • Vyazovaya A, Proshina E, Gerasimova A, et al. Increased transmissibility of Russian successful strain Beijing B0/W148 of Mycobacterium tuberculosis: indirect clues from history and demographics. Tuberculosis (Edinb). 2020;122:101937.
  • Fursov MV, Shitikov EA, Bespyatykh JA, et al. Genotyping, assessment of virulence and antibacterial resistance of the Rostov strain of Mycobacterium tuberculosis attributed to the Central Asia outbreak clade. Pathogens. 2020;9:335. doi:https://doi.org/10.3390/pathogens9050335.
  • Aguilar D, Hanekom M, Mata D, et al. Mycobacterium tuberculosis strains with the Beijing genotype demonstrate variability in virulence associated with transmission. Tuberculosis (Edinb). 2010;90:319–325.
  • Kato-Maeda M, Shanley CA, Ackart D, et al. Beijing sublineages of Mycobacterium tuberculosis differ in pathogenicity in the Guinea pig. Clin. Vaccine Immunol. 2012;19:1227–1237.
  • Byuraeva YG. Post-educational migration of university graduates: trajectories, factors, intentions. EKO. 2020;10:147–167. doi:https://doi.org/10.30680/ECO0131-7652-2020-10-147-167. Russian
  • Pérez-Lago L, Martínez-Lirola M, García S, et al. Urgent implementation in a hospital setting of a strategy to rule out secondary cases caused by imported extensively drug-resistant Mycobacterium tuberculosis strains at diagnosis. J Clin Microbiol. 2016;54:2969–2974.