2,262
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Viral intra-host evolution in immunocompetent children contributes to human norovirus diversification at the global scale

ORCID Icon, , , , , , ORCID Icon, & ORCID Icon show all
Pages 1717-1730 | Received 07 Jun 2021, Accepted 08 Aug 2021, Published online: 02 Sep 2021

References

  • Prasad BV, Hardy ME, Dokland T, et al. X-ray crystallographic structure of the Norwalk virus capsid. Science. 1999 Oct 8;286(5438):287–290.
  • Ford-Siltz LA, Wales S, Tohma K, et al. Genotype-specific neutralization of norovirus is mediated by antibodies against the protruding domain of the major capsid protein. J Infect Dis. 2020 Mar 17.
  • Koromyslova AD, Morozov VA, Hefele L, et al. Human norovirus neutralized by a monoclonal Antibody targeting the histo-blood group antigen pocket. J Virol. 2019 Mar 1;93(5):e02174-18.
  • Lindesmith LC, McDaniel JR, Changela A, et al. Sera antibody repertoire analyses reveal mechanisms of broad and pandemic strain neutralizing responses after human norovirus vaccination. Immunity. 2019;50(6):1530–1541.e8.
  • Bertolotti-Ciarlet A, Crawford SE, Hutson AM, et al. The 3’ end of Norwalk virus mRNA contains determinants that regulate the expression and stability of the viral capsid protein VP1: a novel function for the VP2 protein. J Virol. 2003 Nov;77(21):11603–11615.
  • Chhabra P, de Graaf M, Parra GI, et al. Updated classification of norovirus genogroups and genotypes. J Gen Virol. 2019 Oct;100(10):1393–1406.
  • Parra GI. Emergence of norovirus strains: a tale of two genes. Virus Evolution. 2019 July;5(2):vez048.
  • van Beek J, de Graaf M, Al-Hello H, et al. Molecular surveillance of norovirus, 2005-16: an epidemiological analysis of data collected from the NoroNet network. Lancet Infect Dis. 2018 May;18(5):545–553.
  • Lindesmith LC, Costantini V, Swanstrom J, et al. Emergence of a norovirus GII.4 strain correlates with changes in evolving blockade epitopes. J Virol. 2013 Mar;87(5):2803–2813.
  • Tohma K, Lepore CJ, Gao Y, et al. Population genomics of GII.4 noroviruses reveal complex diversification and new antigenic sites involved in the emergence of pandemic strains. mBio. 2019 Sep 24;10(5):e02202-19.
  • Kendra JA, Tohma K, Ford-Siltz LA, et al. Antigenic cartography reveals complexities of genetic determinants that lead to antigenic differences among pandemic GII.4 noroviruses. Proc Natl Acad Sci USA. 2021;118(11):e2015874118.
  • Parra GI, Squires RB, Karangwa CK, et al. Static and evolving norovirus genotypes: implications for epidemiology and immunity. PLoS Pathog. 2017 Jan;13(1):e1006136.
  • Tohma K, Lepore CJ, Ford-Siltz LA, et al. Phylogenetic analyses suggest that factors other than the capsid protein play a role in the epidemic potential of GII.2 norovirus. mSphere. 2017 May 17;2(3):e00187-17.
  • Niendorf S, Jacobsen S, Faber M, et al. Steep rise in norovirus cases and emergence of a new recombinant strain GII.P16-GII.2, Germany, winter 2016. Euro Surveill. 2017 Jan 26;22(4):30447.
  • Bull RA, Hansman GS, Clancy LE, et al. Norovirus recombination in ORF1/ORF2 overlap. Emerg Infect Dis. 2005 Jul;11(7):1079–1085.
  • Tohma K, Lepore CJ, Martinez M, et al. Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints. PLoS Pathog. 2021;17(7):e1009744.
  • Bull RA, Eden JS, Luciani F, et al. Contribution of intra- and interhost dynamics to norovirus evolution. J Virol. 2012 Mar;86(6):3219–3229.
  • Hasing ME, Hazes B, Lee BE, et al. A next generation sequencing-based method to study the intra-host genetic diversity of norovirus in patients with acute and chronic infection. BMC Genomics. 2016 Jul 1;17:480.
  • van Beek J, de Graaf M, Smits S, et al. Whole-genome next-generation sequencing to study within-host evolution of norovirus (NoV) among immunocompromised patients with chronic NoV infection. J Infect Dis. 2017 Dec 19;216(12):1513–1524.
  • Vega E, Donaldson E, Huynh J, et al. RNA populations in immunocompromised patients as reservoirs for novel norovirus variants. J Virol. 2014 Dec;88(24):14184–14196.
  • Doerflinger SY, Weichert S, Koromyslova A, et al. Human norovirus evolution in a chronically infected host. mSphere. 2017 Mar 29;2(2):e00352-16.
  • Karst SM, Baric RS. What is the reservoir of emergent human norovirus strains? J Virol. 2015 Jun;89(11):5756–5759.
  • Eden JS, Chisholm RH, Bull RA, et al. Persistent infections in immunocompromised hosts are rarely sources of new pathogen variants. Virus Evol. 2017 Jul;3(2):vex018.
  • Villabruna N, Koopmans MPG, de Graaf M. Animals as reservoir for human norovirus. Viruses. 2019 May 25;11(5):478.
  • Villabruna N, Schapendonk CME, Aron GI, et al. Human noroviruses attach to intestinal tissues of a broad range of animal species. J Virol. 2021 Jan 13;95(3):e01492-20.
  • Ford-Siltz LA, Mullis L, Sanad YM, et al. Genomics analyses of GIV and GVI noroviruses reveal the distinct clustering of human and animal viruses. Viruses. 2019 Mar 1;11(3):204.
  • Villabruna N, Izquierdo Lara RW, Szarvas J, et al. Phylogenetic investigation of norovirus transmission between humans and animals. Viruses. 2020 Nov 10;12(11):1287.
  • Saito M, Goel-Apaza S, Espetia S, et al. Multiple norovirus infections in a birth cohort in a Peruvian periurban community. Clin Infect Dis. 2014 Feb;58(4):483–491.
  • Okhuysen PC, Jiang X, Ye L, et al. Viral shedding and fecal IgA response after Norwalk virus infection. J Infect Dis. 1995 Mar;171(3):566–569.
  • Teunis PF, Sukhrie FH, Vennema H, et al. Shedding of norovirus in symptomatic and asymptomatic infections. Epidemiol Infect. 2015 Jun;143(8):1710–1717.
  • McMurry TL, McQuade ETR, Liu J, et al. Duration of post-diarrheal enteric pathogen carriage in young children in low-resource settings. Clin Infect Dis. 2021 Jun 1;72(11):e806–e814.
  • Siebenga JJ, Beersma MF, Vennema H, et al. High prevalence of prolonged norovirus shedding and illness among hospitalized patients: a model for in vivo molecular evolution. J Infect Dis. 2008 Oct 1;198(7):994–1001.
  • Nasheri N, Petronella N, Ronholm J, et al. Characterization of the genomic diversity of norovirus in linked patients using a metagenomic deep sequencing approach. Front Microbiol. 2017;8:73.
  • Kageyama T, Kojima S, Shinohara M, et al. Broadly reactive and highly sensitive assay for norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J Clin Microbiol. 2003 Apr;41(4):1548–1557.
  • Simonyan V, Chumakov K, Dingerdissen H, et al. High-performance integrated virtual environment (HIVE): a robust infrastructure for next-generation sequence data analysis. Database (Oxford). 2016 Mar 17;2016:baw022.
  • Grubaugh ND, Gangavarapu K, Quick J, et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol. 2019 Jan 8;20(1):8.
  • Yu C, Wales SQ, Mammel MK, et al. Optimizing a custom tiling microarray for low input detection and identification of unamplified virus targets. J Virol Methods. 2016 Aug;234:54–64.
  • Guindon S, Dufayard JF, Lefort V, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010 May;59(3):307–321.
  • Kroneman A, Vennema H, Deforche K, et al. An automated genotyping tool for enteroviruses and noroviruses. J Clin Virol. 2011 Jun;51(2):121–125.
  • Valesano AL, Taniuchi M, Fitzsimmons WJ, et al. The early evolution of oral poliovirus vaccine is shaped by strong positive selection and tight transmission bottlenecks. Cell Host Microbe. 2021 Jan 13;29(1):32–43.e4.
  • Xue KS, Bloom JD. Linking influenza virus evolution within and between human hosts. Virus Evol. 2020 Jan;6(1). veaa010.
  • Bull RA, Eden JS, Rawlinson WD, et al. Rapid evolution of pandemic noroviruses of the GII.4 lineage. PLoS Pathog. 2010 Mar 26;6(3):e1000831.
  • Tohma K, Lepore CJ, Ford-Siltz LA, et al. Evolutionary dynamics of non-GII genotype 4 (GII.4) noroviruses reveal limited and independent diversification of variants. J Gen Virol. 2018 Aug;99(8):1027–1035.
  • McCrone JT, Woods RJ, Martin ET, et al. Stochastic processes constrain the within and between host evolution of influenza virus. Elife. 2018 May 3;7:e35962.
  • Valesano AL, Fitzsimmons WJ, McCrone JT, et al. Influenza B viruses exhibit lower within-host diversity than influenza A viruses in human hosts. J Virol. 2020 Feb 14;94(5):e01710-19.
  • Voorhees IEH, Lee H, Allison AB, et al. Limited intrahost diversity and background evolution accompany 40 years of canine parvovirus host adaptation and spread. J Virol. 2019 Dec 12;94(1):e01162-19.
  • Smith DJ, Lapedes AS, de Jong JC, et al. Mapping the antigenic and genetic evolution of influenza virus. Science. 2004 Jul 16;305(5682):371–376.
  • Yamashita M, Krystal M, Fitch WM, et al. Influenza B virus evolution: co-circulating lineages and comparison of evolutionary pattern with those of influenza A and C viruses. Virology. 1988 Mar;163(1):112–122.
  • Bedford T, Riley S, Barr IG, et al. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature. 2015 Jul 9;523(7559):217–220.
  • Lindesmith LC, Beltramello M, Donaldson EF, et al. Immunogenetic mechanisms driving norovirus GII.4 antigenic variation. PLoS Pathog. 2012;8(5):e1002705.
  • Xue KS, Stevens-Ayers T, Campbell AP, et al. Parallel evolution of influenza across multiple spatiotemporal scales. Elife. 2017 Jun 27;6:e26875.