4,377
Views
5
CrossRef citations to date
0
Altmetric
Influenza Infections

Influenza virus genotype to phenotype predictions through machine learning: a systematic review

Computational Prediction of Influenza Phenotype

, &
Pages 1896-1907 | Received 26 Jun 2021, Accepted 06 Sep 2021, Published online: 23 Sep 2021

References

  • Lupolova N, Lycett SJ, Gally DL. A guide to machine learning for bacterial host attribution using genome sequence data. Microb Genomics. 2019;5(12):1–14.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):596–601
  • Bao Y, Bolotov P, Dernovoy D, et al. The influenza virus resource at the National Center for Biotechnology information. J Virol. 2008;82(2):596–601.
  • Zhang Y, Aevermann BD, Anderson TK, et al. Influenza Research Database: an integrated bioinformatics resource for influenza virus research. Nucleic Acids Res. 2017;45(D1):D466–D474.
  • Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data – from vision to reality. Eurosurveillance. 2017;22(13):1–3.
  • The UniProt Consortium. Uniprot: a worldwide hub of protein knowledge. Nucleic Acids Res. 2018;47(D1):D506–15.
  • Xu B, Tan Z, Li K, et al. Predicting the host of influenza viruses based on the word vector. PeerJ. 2017;5:1–11.
  • Kincaid C. N-Gram methods for influenza host classification. Proceedings of the International Conference on Bioinformatics & Computational Biology: The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing; 2018.
  • Aguas R, Ferguson NM. Feature selection methods for identifying genetic determinants of host species in RNA viruses. PLoS Comput Biol. 2013;9(10):1–10.
  • Eng CL, Tong JC, Tan TW. Distinct host tropism protein signatures to identify possible zoonotic influenza A viruses. PLoS One. 2016;11(2):1–12.
  • Eng CL, Tong JC, Tan TW. Predicting host tropism of influenza A virus proteins using random forest. BMC Med Genomics. 2014;7(Suppl 3):1–11.
  • Eng CLP, Tong JC, Tan TW. Predicting zoonotic risk of influenza A viruses from host tropism protein signature using random forest. Int J Mol Sci. 2017;18(6):1–18.
  • Hu W. Novel host markers in the 2009 pandemic H1N1 influenza A virus. J Biomed Sci Eng. 2010;03(06):584–601.
  • Hu W. Nucleotide host markers in the influenza A viruses. J Biomed Sci Eng. 2010;03(07):684–699.
  • Hu W. Characterization of Asian and North American avian H5N1. Am J Mol Biol. 2011;1:52–61.
  • King D, Miller Z, Jones W, et al. Characteristic sites in the internal proteins of avian and human influenza viruses. J Biomed Sci Eng. 2010;03(10):943–955.
  • Kwon E, Cho M, Kim H, et al. A study on host tropism determinants of influenza virus using machine learning. Curr Bioinform. 2020;15(2):121–134.
  • Yin R, Zhou X, Rashid S, et al. HopPER: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC Med Genomics. 2020;13(1):1–3.
  • Yin R, Zhou X, Zheng J, et al. Computational identification of physicochemical signatures for host tropism of influenza A virus. J Bioinform Comput Biol. 2018;16(6):1–21.
  • Li J, Zhang S, Li B, et al. Machine learning methods for predicting human-adaptative influenza A viruses based on viral nucleotide compositions. Mol Biol Evol. 2019;37(4):1224–1236.
  • Qiang X, Kou Z, Fang G, et al. Scoring amino acid mutations to predict avian-to-human transmission of avian influenza viruses. Molecules. 2018;23(7):1–12.
  • Qiang X, Kou Z. Scoring amino acid mutation to predict pandemic risk of avian influenza virus. BMC Bioinformatics. 2019;20(Suppl 8):1–11.
  • Scarafoni D, Telfer BA, Ricke DO, et al. Predicting influenza A tropism with end-to-end learning of deep networks. Health Secur. 2019;17(6):468–476.
  • Wang J, Kou Z, Duan M, et al. Using amino acid factor scores to predict avian-to-human transmission of avian influenza viruses: a machine learning study. Protein & Peptide Letters. 2013;20(10):1115–1121.
  • Ebrahimi M, Aghagolzadeh P, Shamabadi N, et al. Understanding the underlying mechanism of HA-subtyping in the level of physic-chemical characteristics of protein. PLoS One. 2014;9(5):1–14.
  • Hu W. Host markers and correlated mutations in the overlapping genes of influenza viruses: M1, M2; NS1, NS2; and PB1, PB1-F2. Nat Sci (Irvine). 2010;02(11):1225–1246.
  • Ivan FX, Kwoh CK. Rule-based meta-analysis reveals the major role of PB2 in influencing influenza A virus virulence in mice. BMC Genomics. 2019;20(Suppl 9):1–8.
  • Long GS, Hussen M, Dench J, et al. Identifying genetic determinants of complex phenotypes from whole genome sequence data. BMC Genomics. 2019;20(1):1–7.
  • Peng Y, Zhu W, Feng Z, et al. Identification of genome-wide nucleotide sites associated with mammalian virulence in influenza A viruses. Biosafety and Health. 2020;2(1):32–38.
  • Allen JE, Gardner SN, Vitalis EA, et al. Conserved amino acid markers from past influenza pandemic strains. BMC Microbiol. 2009;9(1):1–10.
  • Attaluri PK, Zheng X, Chen Z, et al. Applying machine learning techniques to classify H1N1 viral strains occurring in 2009 flu pandemic. BIOT-2009. 2009;21–27.
  • Li H, Sun F. Comparative studies of alignment, alignment-free and SVM based approaches for predicting the hosts of viruses based on viral sequences. Sci Rep. 2018;8(1):1–9.
  • Qiang X, Kou Z. Predicting interspecies transmission of avian influenza virus based on wavelet packet decomposition. Comput Biol Chem. 2019;78:455–9.
  • Wang J, Ma C, Kou Z, et al. Predicting transmission of avian influenza A viruses from avian to human by using informative physicochemical properties. Int J Data Min Bioinform. 2013;7(2):166–179.
  • Wang J, Zhou Y, Kou Z. One class support vector machine for predicting avian-to-human transmission of avian influenza A virus. 2012 IEEE International Conference on Computer Science and Automation Engineering. IEEE; 2012.
  • Chrysostomou C, Seker H. Signal-processing-based bioinformatics approach for the identification of influenza A virus subtypes in neuraminidase genes. Conf Proc – IEEE Eng Med Biol Soc. 2013;2013:3066–3069.
  • Shepard SS, Davis CT, Bahl J, et al. LABEL: fast and accurate lineage assignment with assessment of H5N1 and H9N2 influenza A hemagglutinins. PLoS One. 2014;9(1):1–12.
  • Humayun F, Khan F, Fawad N, et al. Computational method for classification of avian influenza A virus using DNA sequence information and physicochemical properties. Front Genet. 2021;12:1–8.
  • Attaluri PK, Chen Z, Lu G. Applying neural networks to classify influenza virus antigenic types and hosts. 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology. IEEE; 2010.
  • Shaltout N, Rafea A, Moustafa A, et al. Using information gain to compare the efficiency of machine learning techniques when classifying influenza based on viral hosts. Trans Eng Technol. Springer; 2015. p. 707.
  • Qiang X, Kou Z. Prediction of interspecies transmission for avian influenza A virus based on a back-propagation neural network. Math Comput Model. 2010;52(11–12):2060–2065.
  • Fabijańska A, Grabowski S. Viral genome deep classifier. IEEE Access. 2019;7:81297–81307.
  • Wang Y, Bao J, Du J, et al. Rapid detection and prediction of influenza A subtype using deep convolutional neural network based ensemble learning. Proceedings of the 2020 10th International Conference on Bioscience, Biochemistry and Bioinformatics; 2020.
  • Chadha A, Dara R, Poljak Z. Convolutional classification of pathogenicity in H5 avian influenza strains. 2019 18th IEEE International Conference on Machine Learning and Applications. IEEE; 2019.
  • Shaltout N, Moustafa M, Rafea A, et al. Comparing PCA to information gain as a feature selection method for Influenza-A classification. 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). IEEE; 2015.
  • Shaltout N, Rafea A, Moustafa A, et al. Optimizing the detection of antiviral-resistant influenza-A strains using machine learning. Proceedings of the World Congress on Engineering and Computer Science; 2016.
  • ElHefnawi M, Sherif FF. Accurate classification and hemagglutinin amino acid signatures for influenza A virus host-origin association and subtyping. Virology. 2014;449:328–338.
  • Kargarfard F, Sami A, Mohammadi-Dehcheshmeh M, et al. Novel approach for identification of influenza virus host range and zoonotic transmissible sequences by determination of host-related associative positions in viral genome segments. BMC Genomics. 2016;17(1):1–10.
  • Attaluri PK, Chen Z, Weerakoon AM, et al. Integrating decision tree and Hidden Markov Model (HMM) for subtype prediction of human influenza A virus. International Conference on Multiple Criteria Decision Making. Springer; 2009.
  • Kargarfard F, Sami A, Hemmatzadeh F, et al. Identifying mutation positions in all segments of influenza genome enables better differentiation between pandemic and seasonal strains. Gene. 2019;697:78–85.
  • Meroz D, Yoon SW, Ducatez MF, et al. Putative amino acid determinants of the emergence of the 2009 influenza A (H1N1) virus in the human population. Proc Natl Acad Sci USA. 2011;108(33):13522–13527.
  • Sherif FF, El Hefnawi M, Kadah Y. Genomic signatures and associative classification of the hemagglutinin protein for human versus avian versus swine influenza A viruses. 2011 28th National Radio Science Conference. IEEE; 2011.
  • Kargarfard F, Sami A, Ebrahimie E. Knowledge discovery and sequence-based prediction of pandemic influenza using an integrated classification and association rule mining (CBA) algorithm. J Biomed Inform. 2015;57:181–188.
  • Sun Y, Zhang K, Qi H, et al. Computational predicting the human infectivity of H7N9 influenza viruses isolated from avian hosts. Transbound Emerg Dis. 2021;68(2):846–856.
  • Kou Z, Lei F, Wang S, et al. Molecular patterns of avian influenza A viruses. Chin Sci Bull. 2008;53(13):2002–2007.
  • Olsen B, Munster VJ, Wallensten A, et al. Global patterns of influenza A virus in wild birds. Science. 2006;312(5772):384–388.
  • Neumann G, Kawaoka Y. Predicting the next influenza pandemics. J Infect Dis. 2019;219(Supplement_1):S14–S20.
  • Long JS, Mistry B, Haslam SM, et al. Host and viral determinants of influenza A virus species specificity. Nat Rev Microbiol. 2019;17(2):67–81.
  • Russell CJ, Hu M, Okda FA. Influenza hemagglutinin protein stability, activation, and pandemic risk. Trends Microbiol. 2018;26(10):841–853.
  • Majzoub K, Wrensch F, Baumert TF. The innate antiviral response in animals: an evolutionary perspective from flagellates to humans. Viruses. 2019;11(8):1–25.
  • Barber MR, Aldridge JR, Webster RG, et al. Association of RIG-I with innate immunity of ducks to influenza. Proc Natl Acad Sci USA. 2010;107(13):5913–5918.
  • Dybowski JN, Heider D, Hoffmann D. Prediction of co-receptor usage of HIV-1 from genotype. PLoS Comput Biol. 2010;6(4):1–10.
  • Díez-Fuertes F, Delgado E, Vega Y, et al. Improvement of HIV-1 coreceptor tropism prediction by employing selected nucleotide positions of the env gene in a Bayesian network classifier. J Antimicrob Chemother. 2013;68(7):1471–1485.
  • Kieslich CA, Tamamis P, Guzman YA, et al. Highly accurate structure-based prediction of HIV-1 coreceptor usage suggests intermolecular interactions driving tropism. PLoS ONE. 2016;11(2):1–15.
  • Luo J, Chen W, Xue L, et al. Prediction of activity and specificity of CRISPR-Cpf1 using convolutional deep learning neural networks. BMC Bioinformatics. 2019;20(1):1–10.
  • Gagne II DJ, Haupt SE, Nychka DW, et al. Interpretable deep learning for spatial analysis of severe hailstorms. Mon Weather Rev. 2019;147(8):2827–2845.
  • Bentley EM, Mather ST, Temperton NJ. The use of pseudotypes to study viruses, virus sero-epidemiology and vaccination. Vaccine. 2015;33(26):2955–2962.
  • Pepin KM, Lass S, Pulliam JR, et al. Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol. 2010;8(11):802–813.