3,175
Views
6
CrossRef citations to date
0
Altmetric
Antimicrobial Agents

Mutations in porin LamB contribute to ceftazidime-avibactam resistance in KPC-producing Klebsiella pneumoniae

, , , , , , , , , , , & show all
Pages 2042-2051 | Received 05 May 2021, Accepted 19 Sep 2021, Published online: 02 Nov 2021

References

  • Farmer JJ, Davis BR, Hickman-Brenner FW, et al. Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol. 1985;21(1):46–76.
  • Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob. 2017;16(1):18.
  • Su S, Li C, Zhao Y, et al. Outbreak of KPC-2-producing Klebsiella pneumoniae ST76 isolates in an intensive care Unit and neurosurgery Unit. Microb Drug Resist. 2020;26(9):1009–1018.
  • Guducuoglu H, Gursoy NC, Yakupogullari Y, et al. Hospital Outbreak of a colistin-resistant, NDM-1- and OXA-48-producing Klebsiella pneumoniae: high mortality from pandrug resistance. Microb Drug Resist. 2018;24(7):966–972.
  • CHINETS [Internet]. Chinet 2020 bacterial drug resistance monitoring results (full year) [cited 2021 Feb 22]. Available from: http://www.chinets.com/Document.
  • European Centre for Disease Prevention and Control [Internet]. Antimicrobial resistance surveillance in Europe[updated 2015; cited 2014]. Available from: http://ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-europe-2014.pdf.
  • Paterson DL, Ko WC, Von Gottberg A, et al. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clin Infect Dis. 2004;39(1):31–37.
  • Nordmann P, Dortet L. Poirel L. carbapenem resistance in Enterobacteriaceae: here is the storm!. Trends Mol Med. 2012;18(5):263–272.
  • Yan WJ, Jing N, Wang SM, et al. Molecular characterization of carbapenem-resistant Enterobacteriaceae and emergence of tigecycline non-susceptible strains in the Henan province in China: a multicentrer study. J Med Microbiol. 2021;70(3):001325.
  • Giani T, Pini B, Arena F, et al. Epidemic diffusion of KPC carbapenemase-producing Klebsiella pneumoniae in Italy: results of the first countrywide survey, 15 May to 30 June 2011. Euro Surveill 2013;18(22):20489.
  • Pollett S, Miller S, Hindler J, et al. Phenotypic and molecular characteristics of carbapenem-resistant Enterobacteriaceae in a health care system in Los Angeles, California, from 2011 to 2013. J Clin Microbiol. 2014;52(11):4003–4009.
  • Bassetti M, Peghin M, Vena A, et al. Treatment of infections due to MDR gram-negative bacteria. Front Med (Lausanne). 2019;6:74.
  • Wang Y, Wang J, Wang R, et al. Resistance to ceftazidime–avibactam and underlying mechanisms. J Glob Antimicrob Resist. 2020;22:18–27.
  • Nelson K, Hemarajata P, Sun D, et al. Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity. Antimicrob Agents Chemother. 2017;61(10):e00989–17.
  • Livermore DM, Warner M, Jamrozy D, et al. In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase. Antimicrob Agents Chemother. 2015;59(9):5324–5330.
  • Clarke AM, Zemcov SJ. Ro 13-9904 and GR 20263, two new cephalosporins with broad-spectrum activity: an in vitro comparison with other beta-lactam antibiotics. J Antimicrob Chemother. 1981;7(5):515–520.
  • Endimiani A, Choudhary Y, Bonomo RA. In vitro activity of NXL104 in combination with beta-lactams against Klebsiella pneumoniae isolates producing KPC carbapenemases. Antimicrob Agents Chemother. 2009;53(8):3599–3601.
  • Lagacé-Wiens PR, Tailor F, Simner P, et al. Activity of NXL104 in combination with beta-lactams against genetically characterized Escherichia coli and Klebsiella pneumoniae isolates producing class A extended-spectrum beta-lactamases and class C beta-lactamases. Antimicrob Agents Chemother. 2011;55(5):2434–2437.
  • Flamm RK, Nichols WW, Sader HS, et al. In vitro activity of ceftazidime/avibactam against gram-negative pathogens isolated from pneumonia in hospitalised patients, including ventilated patients. Int J Antimicrob Agents. 2016;47(3):235–242.
  • Wilson WR, Kline EG, Jones CE, et al. Effects of KPC variant and porin genotype on the in vitro activity of meropenem-vaborbactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2019;63(3):e02048–18.
  • Yin D, Wu S, Yang Y, et al. Results from the China antimicrobial surveillance network (CHINET) in 2017 of the in vitro activities of ceftazidime-avibactam and ceftolozane-tazobactam against clinical isolates of Enterobacteriaceae and pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;63(4):e02431–18.
  • Haidar G, Clancy CJ, Shields RK, et al. Mutations in blaKPC-3 that confer ceftazidime-avibactam resistance encode novel KPC-3 variants that function as extended-spectrum β-lactamases. Antimicrob Agents Chemother. 2017;61(5):e02534–16.
  • Giddins MJ, Macesic N, Annavajhala MK, et al. Successive emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in blaKPC-2-harboring Klebsiella pneumoniae sequence type 307 isolates. Antimicrob Agents Chemother. 2018;62(3):e02101–17.
  • Shields RK, Nguyen MH, Chen L, et al. Pneumonia and renal replacement therapy are risk factors for ceftazidime-avibactam treatment failures and resistance among patients with carbapenem-resistant Enterobacteriaceae infections. Antimicrob Agents Chemother. 2018;62(5):e02497–17.
  • Flamm RK, Nichols WW, Sader HS, et al. In vitro activity of ceftazidime/avibactam against gram-negative pathogens isolated from pneumonia in hospitalised patients, including ventilated patients. Int J Antimicrob Agents. 2016;47(3):235–242.
  • Wang Y, Wang J, Wang R, et al. Resistance to ceftazidime–avibactam and underlying mechanisms. J Glob Antimicrob Resist. 2020;22:18–27.
  • Winkler ML, Papp-Wallace KM, Bonomo RA. Activity of ceftazidime/avibactam against isogenic strains of Escherichia coli containing KPC and SHV β-lactamases with single amino acid substitutions in the Ω-loop. J Antimicrob Chemother. 2015;70(8):2279–2286.
  • Galani I, Antoniadou A, Karaiskos I, et al. Genomic characterization of a KPC-23-producing Klebsiella pneumoniae ST258 clinical isolate resistant to ceftazidime-avibactam. Clin Microbiol Infec. 2019;25(6):763, e5-763.e8.
  • Zhang Y, Kashikar A, Brown CA, et al. Unusual Escherichia coli PBP 3 insertion sequence identified from a collection of carbapenem-resistant Enterobacteriaceae tested in vitro with a combination of ceftazidime-, ceftaroline-, or aztreonam-avibactam. Antimicrob Agents Chemother. 2017;61(8):e00389–17.
  • Seeimann T[Internet]. Mlst Github[cited 2021 Feb 22]. Available from: https://github.com/tseemann/mlst.
  • Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing [S]. Thirty-one informational supplement, 2021, M100S, 31th ed.
  • Gullberg E, Cao S, Berg OG, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7(7):e1002158.
  • Trinetta V, Magossi G, Allard MW, et al. Characterization of Salmonella enterica isolates from selected U.S. swine feed mills by whole-genome sequencing. Foodborne Pathog Dis. 2020;17(2):126–136.
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069.
  • Feldgarden M, Brover V, Haft DH, et al. Validating the AMR finder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother. 2019;63(11):e00483–19.
  • Brisse S, Passet V, Haugaard AB, et al.. wzi gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J Clin Microbiol. 2013;51(12):4073–4078.
  • Jolley KA, Maiden MC. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11(595). doi:https://doi.org/10.1186/1471-2105-11-595.
  • Olawoye IB, Frost SDW, Happi CT. The bacteria genome pipeline (BAGEP): an automated, scalable workflow for bacteria genomes with snakemake. Peerj. 2020;8:e10121.
  • Costa-Hurtado M, Garcia-Rodriguez L, Lopez-Serrano S, et al. Haemophilus parasuis VtaA2 is involved in adhesion to extracellular proteins. Vet Res. 2019;50(1):69.
  • Liu T, Zhou Z, Tian X, et al. A recombinant trivalent vaccine candidate against human adenovirus types 3, 7, and 55. Vaccine. 2018;36(16):2199–2206.
  • Yuan JS, Reed A, Chen F, et al. Statistical analysis of real-time PCR data. BMC Bioinformatics. 2006;7(85). doi:https://doi.org/10.1186/1471-2105-7-85.
  • García-Sureda L, Juan C, Doménech-Sánchez A, et al. Role of Klebsiella pneumoniae LamB porin in antimicrobial resistance. Antimicrob Agents Chemother. 2011;55(4):1803–1805.
  • Tian D, Pan F, Wang C, et al. Resistance phenotype and clinical molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae among pediatric patients in Shanghai. Infect Drug Resist. 2018;11:1935–1943.
  • Hu Y, Liu C, Shen Z, et al. Prevalence, risk factors and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in patients from Zhejiang, China, 2008–2018. Emerg Microbes Infect. 2020;9(1):1771–1779.
  • Epand RM, Epand RF. Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim Biophys Acta. 2009;1788(1):289–294.
  • Lin X, Wang C, Guo C, et al. Differential regulation of OmpC and OmpF by AtpB in Escherichia coli exposed to nalidixic acid and chlortetracycline. J Proteomics. 2012;75(18):5898–5910.
  • Klebba PE, Hofnung M, Charbit A. A model of maltodextrin transport through the sugar-specific porin, LamB, based on deletion analysis. EMBO J. 1994;13(19):4670–4675.
  • Stenberg F, Chovanec P, Maslen SL, et al. Protein complexes of the Escherichia coli cell envelope. J Biol Chem. 2005;280(41):34409–34419.
  • Lin X, Yang M, Li H, et al. Decreased expression of LamB and Odp1 complex is crucial for antibiotic resistance in Escherichia coli. J Proteomics. 2014;98:244–253.
  • Li W, Wang G, Zhang S, et al. An integrated quantitative proteomic and metabolomics approach to reveal the negative regulation mechanism of LamB in antibiotics resistance. J Proteomics. 2019;194:148–159.
  • Ting X, Yu G, Yang J, et al. Epidemiology and mechanisms of ceftazidime–avibactam resistance in gram-negative bacteria. Engineering. 2021 Feb. doi:https://doi.org/10.1016/j.eng.2020.11.004.
  • Livermore DM, Warner M, Jamrozy D, et al. In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase. Antimicrob Agents Chemother. 2015;59(9):5324–5330.
  • Asli A, Brouillette E, Krause KM, et al. Distinctive binding of avibactam to penicillin-binding proteins of gram-negative and gram-positive bacteria. Antimicrob Agents Chemother. 2015;60(2):752–756.
  • Humphries RM, Hemarajata P. Resistance to ceftazidime-avibactam in Klebsiella pneumoniae due to porin mutations and the increased expression of KPC-3. Antimicrob Agents Chemother. 2017;61(6):e00537–17.
  • Alm RA, Johnstone MR, Lahiri SD. Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3. J Antimicrob Chemother. 2015;70(5):1420–1428.