2,385
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Extracellular vesicles from methicillin resistant Staphylococcus aureus stimulate proinflammatory cytokine production and trigger IgE-mediated hypersensitivity

ORCID Icon, , , , , & show all
Pages 2000-2009 | Received 02 Jul 2021, Accepted 06 Oct 2021, Published online: 22 Oct 2021

References

  • Oliveira D, Borges A, Simões M. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins (Basel). 2018;10(6):252. DOI:https://doi.org/10.3390/toxins10060252.
  • Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018;31(4):e00020–18. DOI:https://doi.org/10.1128/CMR.00020-18.
  • van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–228.
  • Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17(1):13–24.
  • Caruana JC, Walper SA. Bacterial membrane vesicles as mediators of microbe – microbe and microbe – host community interactions. Front Microbiol. 2020;11:432. DOI:https://doi.org/10.3389/fmicb.2020.00432.
  • van der Pol L, Stork M, van der Ley P. Outer membrane vesicles as platform vaccine technology. Biotechnol J. 2015;10(11):1689–1706.
  • Lee EY, Choi DY, Kim DK, et al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics. 2009;9:5425–5436.
  • Gurung M, Moon DC, Choi CW, et al. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PLoS One. 2011;6:e27958, DOI:https://doi.org/10.1371/journal.pone.0027958.
  • Jeon H, Oh MH, Jun SH, et al. Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells. Microb Pathog. 2016;93:185–193. DOI:https://doi.org/10.1016/j.micpath.2016.02.014.
  • Schlatterer K, Beck C, Hanzelmann D, et al. The mechanism behind bacterial lipoprotein release: phenol-soluble modulins mediate toll-like receptor 2 activation via extracellular vesicle release from Staphylococcus aureus. mBio. 2018;9:e01851–18. DOI:https://doi.org/10.1128/mBio.01851-18.
  • Wang X, Eagen WJ, Lee JC. Orchestration of human macrophage NLRP3 inflammasome activation by Staphylococcus aureus extracellular vesicles. Proc Natl Acad Sci U S A. 2020;117:3174–3184. DOI:https://doi.org/10.1073/pnas.1915829117.
  • Ono HK, Suzuki Y, Kubota H, et al. Complete genome sequence of Staphylococcus aureus strain 834, isolated from a septic patient in Japan. Microbiol Resour Announc. 2021;10(9):e01477–20. DOI:https://doi.org/10.1128/MRA.01477-20.
  • Théry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006; Chapter 3:Unit 3.22. DOI:https://doi.org/10.1002/0471143030.cb0322s30.
  • Hu DL, Omoe K, Sasaki S, et al. Vaccination with nontoxic mutant toxic shock syndrome toxin 1 protects against Staphylococcus aureus infection. J Infect Dis. 2003;188(5):743–752.
  • Hu DL, Cui JC, Omoe K, et al. A mutant of staphylococcal enterotoxin C devoid of bacterial superantigenic activity elicits a Th2 immune response for protection against Staphylococcus aureus infection. Infect Immun. 2005;73(1):174–180.
  • Hu DL, Omoe K, Narita K, et al. Intranasal vaccination with a double mutant of staphylococcal enterotoxin C provides protection against Staphylococcus aureus infection. Microbes Infect. 2006;8(14–15):2841–2848. DOI:https://doi.org/10.1016/j.micinf.2006.09.001.
  • Narita K, Hu DL, Tsuji T, et al. Intranasal immunization of mutant toxic shock syndrome toxin 1 elicits systemic and mucosal immune response against Staphylococcus aureus infection. FEMS Immunol Med Microbiol. 2008;52(3):389–396.
  • Xu SX, McCormick JK. Staphylococcal superantigens in colonization and disease. Front Cell Infect Microbiol. 2012;2:52, DOI:https://doi.org/10.3389/fcimb.2012.00052.
  • Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461, DOI:https://doi.org/10.3389/fimmu.2014.00461.
  • Schwandner R, Dziarski R, Wesche H, et al. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem. 1999;274:17406–17409.
  • Chattopadhyay S, Sen GC. dsRNA-Activation of TLR3 and RLR signaling: gene induction-dependent and independent effects. J Interferon Cytokine Res. 2014;34(6):427–436.
  • Zhang H, Kang L, Yao H, et al. Streptococcus pneumoniae endopeptidase O (PepO) elicits a strong innate immune response in mice via TLR2 and TLR4 signaling pathways. Front Cell Infect Microbiol. 2016;6:23.
  • Kadioglu A, Weiser JN, Paton JC, et al. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol. 2008;6(4):288–301.
  • Bitto NJ, Cheng L, Johnston EL, et al. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles. 2021;10(6):e12080.
  • Pelegrin P, Barroso-Gutierrez C, Surprenant A. P2x7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J Immunol. 2008;180(11):7147–7157. DOI:https://doi.org/10.4049/jimmunol.180.11.7147.
  • Viganò E, Mortellaro A. Caspase-11: the driving factor for noncanonical inflammasomes. Eur J Immunol. 2013;43(9):2240–2245. DOI:https://doi.org/10.1002/eji.201343800.
  • Askarian F, Lapek Jr JD, Dongre M, et al. Staphylococcus aureus membrane-derived vesicles promote bacterial virulence and confer protective immunity in murine infection models. Front Microbiol. 2018;9:262.
  • Miki H, Nakahashi-Oda C, Sumida T, et al. Involvement of CD300a phosphatidylserine immunoreceptor in aluminum salt adjuvant–induced Th2 responses. J Immunol. 2015;194(11):5069–5076.
  • Choi JP, Kim YS, Kim OY, et al. TNF-alpha is a key mediator in the development of Th2 cell response to inhaled allergens induced by a viral PAMP double-stranded RNA. Allergy. 2012;67(9):1138–1148.
  • Diehl S, Rincón M. The two faces of IL-6 on Th1/Th2 differentiation. Mol Immunol. 2002;39(9):531–536.
  • Tsilochristou O, du Toit G, Sayre PH, et al. Association of Staphylococcus aureus colonization with food allergy occurs independently of eczema severity. J Allergy Clin Immunol. 2019;144(2):494–503.