1,478
Views
9
CrossRef citations to date
0
Altmetric
Coronaviruses

UK B.1.1.7 (Alpha) variant exhibits increased respiratory replication and shedding in nonhuman primates

, , , , , , , , , , , , , ORCID Icon & ORCID Icon show all
Pages 2173-2182 | Received 23 Jul 2021, Accepted 18 Oct 2021, Published online: 21 Nov 2021

References

  • Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed 2020; 91:157–160.
  • WHO. (2021), vol. 2021.
  • Wise J. Covid-19: New coronavirus variant is identified in UK. Br Med J. 2020;371:m4857.
  • CDC. (2021), vol. 2021.
  • Davies NG, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021;372:eabg3055.
  • Volz E, et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature. 2021;593:266–269.
  • Washington NL, et al. Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States. Cell. 2021;184:2587–2594.
  • Challen R, et al. Risk of mortality In patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. Br Med J. 2021;372:579.
  • Davies NG, et al. Increased mortality In community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature. 2021;593:270–274.
  • Grint DJ, et al. Case fatality risk of the SARS-CoV-2 variant of concern B.1.1.7 in England, 16 November to 5 February. Euro Surveill. 2021;26:2100256.
  • Graham MS, et al. Changes In symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health. 2021;6:e335–e345.
  • Frampton D, et al. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage In London, UK: a whole-genome sequencing and hospital-based cohort study. Lancet Infect Dis. 2021;21:1246–1256.
  • Munster VJ, et al. Respiratory disease In rhesus macaques inoculated with SARS-CoV-2. Nature. 2020;585:268–272.
  • Shan C, et al. Infection with novel coronavirus (SARS-CoV-2) causes pneumonia In rhesus macaques. Cell Res. 2020;30:670–677.
  • Aid M, et al. Vascular disease and thrombosis In SARS-CoV-2-infected rhesus macaques. Cell. 2020;183:1354–1366.
  • Yu J, et al. DNA vaccine protection against SARS-CoV-2 In rhesus macaques. Science. 2020;369:806–811.
  • van Doremalen N, et al. Chadox1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia In rhesus macaques. Nature. 2020;586:578–582.
  • Baum A, et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection In rhesus macaques and hamsters. Science. 2020;370:1110–1115.
  • Williamson BN, et al. Clinical benefit of remdesivir In rhesus macaques infected with SARS-CoV-2. Nature. 2020;585:273–276.
  • Singh DK, et al. Responses to acute infection with SARS-CoV-2 In the lungs of rhesus macaques, baboons and marmosets. Nature Microbiology. 2021;6:73–86.
  • Rockx B, et al. Comparative pathogenesis of COVID-19, MERS, and SARS In a nonhuman primate model. Science. 2020;368:1012–1015.
  • Woolsey C, et al. Establishment of an African Green monkey model for COVID-19 and protection against re-infection. Nat Immunol. 2021;22:86–98.
  • Cross RW, et al. Intranasal exposure of African Green monkeys to SARS-CoV-2 results In acute phase pneumonia with shedding and lung injury still present In the early convalescence phase. Virol J. 2020;17:125.
  • Hartman AL, et al. SARS-CoV-2 infection of African Green monkeys results In mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLoS Pathog. 2020;16:e1008903.
  • Blair RV, et al. Acute respiratory distress In aged, SARS-CoV-2-infected African Green monkeys but Not rhesus macaques. Am J Pathol. 2021;191:274–282.
  • Paul P, et al. Genomic surveillance for SARS-CoV-2 variants circulating In the United States, December 2020-May 2021. MMWR Morb Mortal Wkly Rep. 2021;70:846–850.
  • Haddock E, Feldmann F, Shupert WL, et al. Inactivation of SARS-CoV-2 Laboratory specimens. Am J Trop Med Hyg. 2021;104:2195–2198.
  • Doremalen Nv, et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge In preclinical models. Sci Transl Med. 2021;13:eabh0755.
  • V. J. Munster et al., Subtle differences In the pathogenicity of SARS-CoV-2 variants of concern B.1.1.7 and B.1.351 In rhesus macaques. Sci Adv. 2021;7:eabj3627.
  • Reed LJ, Muench H. A simple Method of estimating fifty percent endpoints. Am J Hyg. 1938;27:493–497.
  • Rosenke K, et al. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerg Microbes Infect. 2020;9:2673–2684.
  • Wölfel R, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–469.
  • Brining DL, et al. Thoracic radiography as a refinement methodology for the study of H1N1 influenza In cynomologus macaques (macaca fascicularis). Comp Med. 2010;60:389–395.
  • Calistri P, et al. Infection sustained by lineage B.1.1.7 of SARS-CoV-2 is characterised by longer persistence and higher viral RNA loads In nasopharyngeal swabs. Int J Infect Dis. 2021;105:753–755.
  • Lui K, Wilson MP, Low G. Abdominal imaging findings In patients with SARS-CoV-2 infection: a scoping review. Abdominal Radiology. 2021;46:1249–1255.
  • Speranza E, et al. Single-cell RNA sequencing reveals SARS-CoV-2 infection dynamics In lungs of African Green monkeys. Sci Transl Med. 2021;13:eabe8146.
  • Melin AD, Janiak MC, Marrone F, et al. Comparative ACE2 variation and primate COVID-19 risk. Commun Biol. 2020;3:641.