2,025
Views
7
CrossRef citations to date
0
Altmetric
Antimicrobial Agents

IMB-XMA0038, a new inhibitor targeting aspartate-semialdehyde dehydrogenase of Mycobacterium tuberculosis

, , , , , , , & show all
Pages 2291-2299 | Received 04 Jul 2021, Accepted 10 Nov 2021, Published online: 02 Dec 2021

References

  • WHO. Global tuberculosis report 2021.
  • Prasad R, Gupta N, Singh M. Multidrug resistant tuberculosis: trends and control. Indian J Chest Dis Allied Sci. 2014;56:237–246.
  • Htike Min PK, Pitaksajjakul P, Tipkrua N, et al. Novel mutation detection IN rpoB OF rifampicin-resistant Mycobacterium tuberculosis using pyrosequencing. Southeast Asian J Trop Med Public Health. 2014;45:843–852.
  • Verdugo D, Fallows D, Ahuja S, et al. Epidemiologic correlates of pyrazinamide-resistant Mycobacterium tuberculosis in New York city. Antimicrob Agents Chemother. 2015;59:6140–6150.
  • Jagielski T, Bakula Z, Roeske K, et al. Detection of mutations associated with isoniazid resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates. J Antimicrob Chemother. 2014;69:2369–2375.
  • Lu P, Villellas C, Koul A, et al. The ATP synthase inhibitor bedaquiline interferes with small-molecule efflux in Mycobacterium smegmatis. J Antibiot (Tokyo). 2014;67:835–837.
  • Blair HA, Scott LJ. Delamanid: a review of its use in patients with multidrug-resistant tuberculosis. Drugs. 2015;75:91–100.
  • Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet. 2012;380:986–993.
  • Conradie F, Diacon AH, Ngubane N, et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med. 2020;382:893–902.
  • Rodriguez-Rivera FP, Zhou X, Theriot JA, et al. Visualization of mycobacterial membrane dynamics in live cells. J Am Chem Soc. 2017;139:3488–3495.
  • Bhat ZS, Rather MA, Maqbool M, et al. Cell wall: A versatile fountain of drug targets in Mycobacterium tuberculosis. Biomed Pharmacother. 2017;95:1520–1534.
  • Usha V, Lloyd AJ, Lovering AL, et al. Structure and function of Mycobacterium tuberculosis meso-diaminopimelic acid (DAP) biosynthetic enzymes. FEMS Microbiol Lett. 2012;330:10–16.
  • Grzegorzewicz AE, De Sousa-d'Auria C, McNeil MR, et al. Assembling of the Mycobacterium tuberculosis cell wall core. J Biol Chem. 2016;291:18867–18879.
  • Kale M, Shaikh MS. Exploration of lysine pathway for developing newer anti-microbial analogs through enzyme inhibition approach. International Journal of Pharmaceutical Sciences Review & Research. 2014;25:221–230.
  • Pavelka M, Jacobs W. Biosynthesis of diaminopimelate, the precursor of lysine and a component of peptidoglycan, is an essential function of Mycobacterium smegmatis. J Bacteriol. 1996;178:6496–6507.
  • Meng J, Yang Y, Xiao C, et al. Identification and validation of aspartic acid semialdehyde dehydrogenase as a New anti-Mycobacterium tuberculosis target. Int J Mol Sci. 2015;16:23572–23586.
  • Allen BW. Mycobacteria. General culture methodology and safety considerations. Methods Mol Biol. 1998;101:15–30.
  • van Helden PD, Victor TC, Warren RM, et al. Isolation of DNA from Mycobacterium tubercolosis. Methods Mol Med. 2001;54:19–30.
  • Zegzouti H, Zdanovskaia M, Hsiao K, et al. ADP-Glo: a bioluminescent and homogeneous ADP monitoring assay for kinases. Assay Drug Dev Technol. 2009;7:560–572.
  • Gao P, Yang Y, Xiao C, et al. Identification and validation of a novel lead compound targeting 4-diphosphocytidyl-2-C-methylerythritol synthetase (IspD) of mycobacteria. Eur J Pharmacol. 2012;694:45–52.
  • Zhang J-H, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen. 1999;4:67–73.
  • Correia I, Adao P, Roy S, et al. Hydroxyquinoline derived vanadium(IV and V) and copper(II) complexes as potential anti-tuberculosis and anti-tumor agents. J Inorg Biochem. 2014;141:83–93.
  • Al-Fahdawi MQ, Rasedee A, Al-Qubaisi MS, et al. Cytotoxicity and physicochemical characterization of iron-manganese-doped sulfated zirconia nanoparticles. Int J Nanomedicine. 2015;10:5739–5750.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.
  • Hutton CA, Perugini MA, Gerrard JA. Inhibition of lysine biosynthesis: an evolving antibiotic strategy. Mol Biosyst. 2007;3:458–465.
  • Dogovski C, Atkinson SC, Dommaraju SR, et al. Lysine biosynthesis in bacteria: an unchartered pathway for novel antibiotic design. Encyclopedia of Life Support Systems. 2009;11:116–136.
  • Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA. 2003;100:12989–12994.
  • Evans G, Schuldt L, Griffin MD, et al. A tetrameric structure is not essential for activity in dihydrodipicolinate synthase (DHDPS) from Mycobacterium tuberculosis. Arch Biochem Biophys. 2011;512:154–159.
  • Paiva A, Vanderwall D, Blanchard J, et al. Inhibitors of dihydrodipicolinate reductase, a key enzyme of the diaminopimelate pathway of Mycobacterium tuberculosis. Biochim Biophys Acta. 2001;9:67–77.
  • Gillner D, Armoush N, Holz RC, et al. Inhibitors of bacterial N-succinyl-L, L-diaminopimelic acid desuccinylase (DapE) and demonstration of in vitro antimicrobial activity. Bioorg Med Chem Lett. 2009;19:6350–6352.
  • Cox R, Gibson J, Mayo Martín M. Aspartyl phosphonates and phosphoramidates: the first synthetic inhibitors of bacterial aspartate-semialdehyde dehydrogenase. Chembiochem: a European Journal of Chemical Biology. 2002;3:874–886.
  • Gao G, Liu X, Pavlovsky A, et al. Identification of selective enzyme inhibitors by fragment library screening. J Biomol Screen. 2010;15:1042–1050.
  • Sarver J, Trendel J, Bearss N, et al. Early stage efficacy and toxicology screening for antibiotics and enzyme inhibitors. J Biomol Screen. 2012;17:673–682.
  • Thangavelu B, Bhansali P, Viola RE. Elaboration of a fragment library hit produces potent and selective aspartate semialdehyde dehydrogenase inhibitors. Bioorg Med Chem. 2015;23:6622–6631.
  • Luniwal A, Wang L, Pavlovsky A, et al. Molecular docking and enzymatic evaluation to identify selective inhibitors of aspartate semialdehyde dehydrogenase. Bioorg Med Chem. 2012;20:2950–2956.
  • Kumar R, Garg P, Bharatam PV. Pharmacoinformatics analysis to identify inhibitors of Mtb-ASADH. J Biomol Struct Dyn. 2016;34:1–14.
  • Kumar R, Garg P, Bharatam PV. Shape-based virtual screening, docking, and molecular dynamics simulations to identify Mtb-ASADH inhibitors. J Biomol Struct Dyn. 2015;33:1082–1093.
  • Singh A, Kushwaha HR, Sharma P. Molecular modelling and comparative structural account of aspartyl beta-semialdehyde dehydrogenase of Mycobacterium tuberculosis (H37Rv). J Mol Model. 2008;14:249–263.
  • Hadfield A, Shammas C, Kryger G, et al. Active site analysis of the potential antimicrobial target aspartate semialdehyde dehydrogenase. Biochemistry. 2001;40:14475–14483.
  • Vyas R, Tewari R, Weiss MS, et al. Structures of ternary complexes of aspartate-semialdehyde dehydrogenase (Rv3708c) from Mycobacterium tuberculosis H37Rv. Acta Crystallogr D Biol Crystallogr. 2012;68:671–679.