1,724
Views
0
CrossRef citations to date
0
Altmetric
Emerging seasonal and pandemic influenza infections

Pigs are highly susceptible to but do not transmit mink-derived highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b

, , , , , , , , , , , , & show all
Article: 2353292 | Received 08 Jan 2024, Accepted 03 May 2024, Published online: 26 May 2024

References

  • Tong S, Li Y, Rivailler P, et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A. 2012;109(11):4269–4274. DOI:10.1073/pnas.1116200109
  • Tong S, Zhu X, Li Y, et al. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013;9(10):e1003657. DOI:10.1371/journal.ppat.1003657
  • Vey M, Orlich M, Adler S, et al. Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R. Virology. 1992;188(1):408–413. DOI:10.1016/0042-6822(92)90775-K
  • Xu X, Subbarao, Cox NJ, et al. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology. 1999;261(1):15–19. DOI:10.1006/viro.1999.9820
  • WHO/OIE/FAO H5N1 Evolution Working Group. Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis. 2008;14(7):e1. DOI:10.3201/eid1407.071681
  • World Health Organization. Evolution of the influenza A(H5) haemagglutinin: WHO/OIE/FAO H5 Working Group reports a new clade designated 2.3.4.4 2015. Available from: https://www.who.int/publications/m/item/evolution-of-the-influenza-a(h5)-haemagglutinin-who-oie-fao-h5-working-group-reports-a-new-clade-designated-2.3.4.4.
  • Pohlmann A, King J, Fusaro A, et al. Has epizootic become enzootic? Evidence for a fundamental change in the infection dynamics of highly pathogenic avian influenza in Europe, 2021. mBio. 2022;13(4):e0060922.
  • Bevins SN, Shriner SA, Cumbee JC, et al. Intercontinental movement of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4 virus to the United States, 2021. Emerg Infect Dis. 2022;28(5):1006–1011. DOI:10.3201/eid2805.220318
  • Shinya K, Ebina M, Yamada S, et al. Influenza virus receptors in the human airway. Nature. 2006;440(7083):435–436. DOI:10.1038/440435a
  • World Health Organization. Avian influenza weekly update number. 2023;904.
  • Harfoot R, Webby RJ. H5 influenza, a global update. J Microbiol. 2017;55(3):196–203. DOI:10.1007/s12275-017-7062-7
  • World Health Organization. Assessment of risk associated with recent influenza A (H5N1) clade 2.3.4.4b viruses. 2022.
  • Aguero M, Monne I, Sanchez A, et al. Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022. Euro Surveill. 2023;28:3. DOI:10.2807/1560-7917.ES.2023.28.3.2300001
  • Ma W, Belisle SE, Mosier D, et al. 2009 pandemic H1N1 influenza virus causes disease and upregulation of genes related to inflammatory and immune responses, cell death, and lipid metabolism in pigs. J Virol. 2011;85(22):11626–11637. DOI:10.1128/JVI.05705-11
  • Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints12. Am J Epidemiol 1938;27(3):493–497. DOI:10.1093/oxfordjournals.aje.a118408
  • Gaudreault NN, Trujillo JD, Carossino M, et al. SARS-CoV-2 infection, disease and transmission in domestic cats. Emerg Microbes Infect. 2020;9(1):2322–2332. DOI:10.1080/22221751.2020.1833687
  • Sponseller BA, Strait E, Jergens A, et al. Influenza A pandemic (H1N1) 2009 virus infection in domestic cat. Emerg Infect Dis. 2010;16(3):534–537. DOI:10.3201/eid1603.091737
  • Gauger PC, Vincent AL. Serum virus neutralization assay for detection and quantitation of serum neutralizing antibodies to influenza A virus in swine. Methods Mol Biol. 2020;2123:321–333. DOI:10.1007/978-1-0716-0346-8_23
  • Artiaga BL, Morozov I, Ransburgh R, et al. Evaluating alpha-galactosylceramide as an adjuvant for live attenuated influenza vaccines in pigs. Anim Dis. 2022;2(1):19. DOI:10.1186/s44149-022-00051-x
  • Lee J, Henningson J, Ma J, et al. Effects of PB1-F2 on the pathogenicity of H1N1 swine influenza virus in mice and pigs. J Gen Virol. 2017;98(1):31–42. DOI:10.1099/jgv.0.000695
  • Lee DH. Complete genome sequencing of influenza A viruses using next-generation sequencing. Methods Mol Biol. 2020;2123:69–79. DOI:10.1007/978-1-0716-0346-8_6
  • Zhou B, Wentworth DE. Influenza A virus molecular virology techniques. Methods Mol Biol. 2012;865:175–192. DOI:10.1007/978-1-61779-621-0_11
  • Hoffmann E, Stech J, Guan Y, et al. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001;146(12):2275–2289. DOI:10.1007/s007050170002
  • Mena I, Nelson MI, Quezada-Monroy F, et al. Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. Elife. 2016;28:5.
  • Joseph U, Su YC, Vijaykrishna D, et al. The ecology and adaptive evolution of influenza A interspecies transmission. Influenza Other Respir Viruses. 2017;11(1):74–84. DOI:10.1111/irv.12412
  • Ma W, Vincent AL, Gramer MR, et al. Identification of H2N3 influenza A viruses from swine in the United States. Proc Natl Acad Sci U S A. 2007;104(52):20949–20954. DOI:10.1073/pnas.0710286104
  • Garten RJ, Davis CT, Russell CA, et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science. 2009;325(5937):197–201. DOI:10.1126/science.1176225
  • World Health Organization. Tool for influenza pandemic risk assessment (TIPRA). 2020.
  • Rajao DS, Vincent AL. Swine as a model for influenza A virus infection and immunity. ILAR J. 2015;56(1):44–52. DOI:10.1093/ilar/ilv002
  • Ito T, Couceiro JN, Kelm S, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol. 1998;72(9):7367–7373. DOI:10.1128/JVI.72.9.7367-7373.1998
  • Kaplan BS, Torchetti MK, Lager KM, et al. Absence of clinical disease and contact transmission of HPAI H5NX clade 2.3.4.4 from North America in experimentally infected pigs. Influenza Other Respir Viruses. 2017;11(5):464–470. DOI:10.1111/irv.12463
  • Graaf A, Piesche R, Sehl-Ewert J, et al. Low susceptibility of pigs against experimental infection with HPAI virus H5N1 clade 2.3.4.4b. Emerg Infect Dis. 2023;29(7):1492–1495. DOI:10.3201/eid2907.230296
  • Elsmo EJ, Wunschmann A, Beckmen KB, et al. Highly pathogenic avian influenza A(H5N1) virus clade 2.3.4.4b infections in wild terrestrial mammals, United States, 2022. Emerg Infect Dis. 2023;29(12):2451–2460. DOI:10.3201/eid2912.230464
  • Thorsson E, Zohari S, Roos A, et al. Highly pathogenic avian influenza A(H5N1) virus in a harbor porpoise, Sweden. Emerg Infect Dis. 2023;29(4):852–855. DOI:10.3201/eid2904.221426
  • Bordes L, Vreman S, Heutink R, et al. Highly pathogenic avian influenza H5N1 virus infections in wild Red foxes (Vulpes vulpes) show neurotropism and adaptive virus mutations. Microbiol Spectr. 2023;11(1):e0286722. DOI:10.1128/spectrum.02867-22
  • Balzli C, Lager K, Vincent A, et al. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses. Influenza Other Respir Viruses. 2016;10(4):346–352. DOI:10.1111/irv.12386
  • Richt JA, Lager KM, Janke BH, et al. Pathogenic and antigenic properties of phylogenetically distinct reassortant H3N2 swine influenza viruses cocirculating in the United States. J Clin Microbiol. 2003;41(7):3198–3205. DOI:10.1128/JCM.41.7.3198-3205.2003
  • Kida H, Ito T, Yasuda J, et al. Potential for transmission of avian influenza viruses to pigs. J Gen Virol. 1994;75(Pt 9):2183–2188. DOI:10.1099/0022-1317-75-9-2183
  • De Vleeschauwer A, Van Poucke S, Braeckmans D, et al. Efficient transmission of swine-adapted but not wholly avian influenza viruses among pigs and from pigs to ferrets. J Infect Dis. 2009;200(12):1884–1892. DOI:10.1086/648475
  • Shortridge KF, Zhou NN, Guan Y, et al. Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology. 1998;252(2):331–342. DOI:10.1006/viro.1998.9488
  • Choi YK, Nguyen TD, Ozaki H, et al. Studies of H5N1 influenza virus infection of pigs by using viruses isolated in Vietnam and Thailand in 2004. J Virol. 2005;79(16):10821–5. DOI:10.1128/JVI.79.16.10821-10825.2005
  • Maemura T, Guan L, Gu C, et al. Characterization of highly pathogenic clade 2.3.4.4b H5N1 mink influenza viruses. EBioMedicine. 2023;97:104827. DOI:10.1016/j.ebiom.2023.104827
  • Lee JH, Pascua PN, Song MS, et al. Isolation and genetic characterization of H5N2 influenza viruses from pigs in Korea. J Virol. 2009;83(9):4205–4215. DOI:10.1128/JVI.02403-08
  • Bussey KA, Bousse TL, Desmet EA, et al. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J Virol. 2010;84(9):4395–4406. DOI:10.1128/JVI.02642-09
  • Neumann G, Chen H, Gao GF, et al. H5N1 influenza viruses: outbreaks and biological properties. Cell Res. 2010;20(1):51–61. DOI:10.1038/cr.2009.124
  • Kim JH, Hatta M, Watanabe S, et al. Role of host-specific amino acids in the pathogenicity of avian H5N1 influenza viruses in mice. J Gen Virol. 2010;91(5):1284–1289. DOI:10.1099/vir.0.018143-0
  • Herfst S, Schrauwen EJ, Linster M, et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012;336(6088):1534–1541. DOI:10.1126/science.1213362
  • Linster M, van Boheemen S, de Graaf M, et al. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell. 2014;157(2):329–339. DOI:10.1016/j.cell.2014.02.040
  • Hatta M, Gao P, Halfmann P, et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 2001;293(5536):1840–1842. DOI:10.1126/science.1062882
  • Steel J, Lowen AC, Mubareka S, et al. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627 K or 627E/701N. PLoS Pathog. 2009;5(1):e1000252. DOI:10.1371/journal.ppat.1000252
  • Taft AS, Ozawa M, Fitch A, et al. Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nat Commun. 2015;6:7491. DOI:10.1038/ncomms8491
  • Song W, Wang P, Mok BW, et al. The K526R substitution in viral protein PB2 enhances the effects of E627 K on influenza virus replication. Nat Commun. 2014;5:5509. DOI:10.1038/ncomms6509
  • Stevens J, Blixt O, Tumpey TM, et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science. 2006;312(5772):404–410. DOI:10.1126/science.1124513
  • Lindh E, Lounela H, Ikonen N, et al. Highly pathogenic avian influenza A(H5N1) virus infection on multiple fur farms in the South and Central Ostrobothnia regions of Finland, 2023. Euro Surveill. 2023;28:31. DOI:10.2807/1560-7917.ES.2023.28.31.2300400
  • Adlhoch C, Fusaro A, Gonzales JL, et al. Avian influenza overview April–June 2023. EFSA J. 2023;21(7):e08191.