32
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Toward the use of graphene oxide-based planar inductors as a transducer for gas sensing applications

ORCID Icon, , , , & ORCID Icon
Pages 293-304 | Received 02 Nov 2023, Accepted 22 Feb 2024, Published online: 21 Mar 2024

References

  • Hidayah NMS, Liu WW, Lai CW, et al. Comparison on graphite, graphene oxide and reduced graphene oxide: synthesis and characterization. AIP Conf. Proc. 2017;1892(1): 150002. doi:10.1063/1.5005764
  • Razaq A, Bibi F, Zheng X, et al. Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: from fabrication to applications. Materials. 2022;15(3):1012. doi: 10.3390/ma15031012
  • Jaafar E, Kashif M, Sahari SK et al. Study on Morphological, Optical and Electrical Properties of Graphene Oxide (GO) and Reduced Graphene Oxide (RGO). Materials science forum. 2018;917:112–116. https://doi.org/10.4028/www.scientific.net/msf.917.112
  • T T, Liu F, Liu Y, et al. Identifying the magnetic properties of graphene oxide. Appl Phys Lett. 2014;104(12):123104. mars 2014. doi: 10.1063/1.4869827
  • Sarkar SK, Raul KK, Pradhan SS, et al. Magnetic properties of graphite oxide and reduced graphene oxide. Physica E Low Dimens Syst Nanostruct. 2014 nov;64:78–82. doi: 10.1016/j.physe.2014.07.014
  • Huang X-M, Liu L-Z, Zhou S, et al. Physical properties and device applications of graphene oxide. Front Phys. 2020;15(3). juin 2020. doi: 10.1007/s11467-019-0937-9
  • Gómez-Navarro C, Weitz RT, Bittner AM, et al. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Lett. 2007 nov;7(11):3499–3503. doi: 10.1021/nl072090c
  • Ghulam AN, dos Santos OAL, Hazeem L, et al. Graphene oxide (GO) materials—applications and toxicity on living organisms and environment. J Funct Biomater. 2022;13(2):77. doi: 10.3390/jfb13020077
  • Anand A, Unnikrishnan B, Wei S-C, et al. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents–a minireview. Nanoscale Horiz. 2019;4(1):117–137. doi: 10.1039/C8NH00174J
  • Lee H-J, Yook J-G. Graphene nanomaterials-based radio-Frequency/Microwave biosensors for biomaterials detection. Materials. 2019;12(6):952. doi: 10.3390/ma12060952
  • Tang N, Jiang Y, Qu H, et al. Graphene oxide doped conducting polymer nanowires fabricated by Soft Lithography for gas sensing applications. IEEE Sens J. 2018;18(19):7765–7771. mai. doi: 10.1109/JSEN.2018.2833146
  • Gomez-Alvarez MA, Morales C, Méndez J, et al. A comparative study of the ZnO growth on graphene and graphene oxide: the role of the initial oxidation state of carbon. C. 2020;6(2):41. doi: 10.3390/c6020041
  • Barkauskas J, Dakševič J, Budrienė S, et al. Adhesion of graphene oxide on a transparent PET substrate: a study focused on the optimization process. J Adhes Sci Technol. 2014;28(20):2016–2031. doi: 10.1080/01694243.2014.941312
  • Jeong J-T, Choi M-K, Sim Y, et al. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate. Sci Rep. 2016;6(1): sept. doi: 10.1038/srep33835
  • Huang X, Leng T, Georgiou T, et al. Graphene oxide dielectric permittivity at GHz and its applications for wireless humidity sensing. Sci Rep. 2018;8(1): janv. doi: 10.1038/s41598-017-16886-1
  • Le T, Lin Z, Wong CP, et al. Enhanced-performance wireless conformal “smart skins” utilizing inkjet-printed carbon-nanostructures. 2014 IEEE 64th Electronic Components and Technology Conference (ECTC); Orlando, FL, USA. doi:10.1109/ECTC.2014.6897372
  • Akhter F, Alahi MEE, Siddiquei HR, et al. Graphene oxide (GO) coated impedimetric gas sensor for selective detection of carbon dioxide (CO2) with temperature and humidity compensation. IEEE Sens J. 2020;21(4):4241–4249. doi: 10.1109/JSEN.2020.3035795
  • Barnes B, Elkholy I, Bane N, et al. Laser scribed graphene/polymer composites: a possible verification of carbon nano-coil inductors. Curr Appl Phys août 2022. 2022;40:62–67. doi: 10.1016/j.cap.2020.06.008
  • Abunahla H, Gadhafi R, Mohammad B, et al. Integrated graphene oxide resistive element in tunable RF filters. Sci Rep. 2020;10(1). Art. no 1, août. doi: 10.1038/s41598-020-70041-x
  • Zhang D, Tong J, Xia B, et al. Ultrahigh performance humidity sensor based on layer-by-layer self assembly of graphene oxide/polyelectrolyte nanocomposite film. Sensors And Actuat B Chem. 2014;203:263–270. doi: 10.1016/j.snb.2014.06.116
  • Cai C-H, Qin M. High-performance bulk Silicon Interdigital Capacitive Temperature Sensor based on Graphene Oxide. Electron Lett. 2013;49(7):488–490. doi: 10.1049/el.2012.4141
  • Poorteimour S, Haratizadeh H. Performance of a fabricated nanocomposite-based capacitive gas sensor at room temperature. J Mater Sci Mater Electron. 2017;28(24):18529–18534. doi: 10.1007/s10854-017-7800-y
  • Ren Q-Y, Huang JQ, Wang, LF, et al. Temperature sensing properties of the passive wireless sensor based on graphene oxide films. IEEE SENSORS; Nov. 2014; Valencia, Spain. doi:10.1109/ICSENS.2014.6985027
  • Dong L, Wang L-F, Zhang C, et al. A cyclic scanning repeater for enhancing the remote distance of LC passive wireless sensors. IEEE Trans Circuits Syst I: Reg Papers. 2016;63(9):1426–1433. doi: 10.1109/TCSI.2016.2572221
  • Zhao J, Liu L, Li F, et al. Graphene oxide: physics and applications. In: Springer briefs in physics. Berlin, Heidelberg Berlin, Heidelberg:Springer; 2015. doi:10.1007/978-3-662-44829-8
  • Gopalakrishnan A. A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol. 2015;6:1000253. doi:10.4172/2157-7439.1000253
  • Almeida P, Pereira P, Fino H, et al. Using Variable Width RF Integrated Inductors for Quality Factor Optimization. Technological Innovation for the Internet of Things. 2013. doi:10.1007/978-3-642-37291-9_67
  • Tounsi F, Hadj Said M, Hauwaert M, et al. Variation range of different inductor topologies with shields for RF and inductive sensing applications. Sensors. 2022;22(9):3514. doi: 10.3390/s22093514
  • Hong X, Yu W, Wang A, et al. Graphite oxide paper as a polarizable electrical conductor in the through-thickness direction. Carbon. Nov. 2016;109:874–882. doi:10.1016/j.carbon.2016.08.083
  • Le C, Ma Q, Zhi S, et al. Planar spiral micro-inductor based on graphene/cu composite film conductive coil fabricated by MEMS technology. J Electron Mater. Sept. 2023;52(12):8030–8037. doi:10.1007/s11664-023-10720-3
  • Wang D-W, Yuan M-J, Dai J-Y, et al. Electrical modeling and characterization of graphene-based on chip spiral inductors. Micromach. 2022; 13(11):1829. doi:10.3390/mi13111829
  • Tounsi F, Hadj Said M, Rufer L, et al. Optimization of induced voltage from CMOS-Compatible MEMS electrodynamic microphone with coaxial planar inductances. IEEE Sens J. 2016;16(18):6879–6889. sept. 2016. doi: 10.1109/JSEN.2016.2589271
  • Boehm HP. Surface oxides on carbon and their analysis: a critical assessment. Carbon. 2002;40(2):145–149. doi: 10.1016/S0008-6223(01)00165-8
  • Shahriary L et Athawale A, Athawale AA. Graphene oxide synthesized by using modified hummers approach. Renew Energy Environ Eng. 2014 jan;2:1–10. doi: 10.1155/2014/903872
  • Karakoti M, Jangra R, Pandey S, et al. Binder-free reduced graphene oxide as electrode material for efficient supercapacitor with aqueous and polymer electrolytes. High Perform Polym. 2020;32(2):175–182. doi: 10.1177/0954008320905659
  • Li W, Gedde UW, Hillborg H. Electric field grading material based on thermally reduced graphene oxide. Proceedings of the Nordic Insulation Symposium; Copenhagen, Denmark; 2017. doi:10.5324/nordis.v0i24.2282
  • Tang N, Tang T, Pan H et al. Magnetic properties of graphene. Spintronic 2D Materials Fundamentals and Applications. Elsevier; 2020. p. 137–161. doi:10.1016/B978-0-08-102154-5.00005-9
  • Lee D, Seo J, Zhu X, et al. Magnetism in graphene oxide induced by epoxy groups. Appl Phys Lett. 2015;106(17):172402. avr. doi: 10.1063/1.4919529
  • Shaban M, Ali S, Rabia M, et al. Design and application of nanoporous graphene oxide film for CO2, H2, and C2H2 gases sensing. J Mater Res Technol. 2019 sept;8(5):4510–4520. doi:10.1016/j.jmrt.2019.07.064
  • Zaki SE, Basyooni MA, Shaban M, et al. Role of oxygen vacancies in vanadium oxide and oxygen functional groups in graphene oxide for room temperature CO2 gas sensors. Sens Actuators A août 2019. 2019;294:17–24. doi: 10.1016/j.sna.2019.04.037
  • Ly TN, Park S. Highly sensitive gas sensor using hierarchically self-assembled thin films of graphene oxide and gold nanoparticles. J Ind Eng Chem. 2018 nov;67:417–428. doi: 10.1016/j.jiec.2018.07.016
  • Zhao J, Liu L, Li F. Application of GO in Environmental Science. Graphene Oxide: Physics and Applications. Springer; 2014. doi:10.1007/978-3-662-44829-8_6
  • Drewniak S, Muzyka R, Stolarczyk A, et al. Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors. 2016;16(1): janv. doi: 10.3390/s16010103
  • Kacem K, Casanova-Chafer J, Ameur S et al. Gas sensing properties of graphene oxide loaded with SrTiO3 nanoparticles. J Alloys Compd. avr. 2023;941:169011. doi: 10.1016/j.jallcom.2023.169011
  • Gupta M, Hawari H, Kumar P, et al. Copper oxide/functionalized graphene hybrid nanostructures for room temperature gas sensing applications. Crystals. 2022;12(2):264. doi: 10.3390/cryst12020264
  • Gupta M, Hawari HF, Kumar P, et al. Functionalized reduced graphene oxide thin films for ultrahigh CO2 gas sensing performance at room temperature. Nanomaterials. 2021;11(3):623–2021. doi: 10.3390/nano11030623

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.