2,926
Views
4
CrossRef citations to date
0
Altmetric
Mini-Review

Effects of pre- and post-natal exposure to bisphenol A on the stress system

, , &
Article: e1184775 | Received 11 Feb 2016, Accepted 25 Apr 2016, Published online: 25 May 2016

References

  • Gump BB, Stewart P, Reihman J, Lonky E, Darvill T, Parsons PJ, Granger DA. Low-level prenatal and postnatal blood lead exposure and adrenocortical responses to acute stress in children. Environ health Perspect 2008; 116:249-55; PMID:18288326; http://dx.doi.org/10.1289/ehp.10391
  • Palermo FA, Cocci P, Nabissi M, Polzonetti-Magni A, Mosconi G. Cortisol response to waterborne 4-nonylphenol exposure leads to increased brain POMC and HSP70 mRNA expressions and reduced total antioxidant capacity in juvenile sole (Solea solea). Comp Biochem Physiol Toxicol Pharmacol 2012; 156:135-9; PMID:22918179; http://dx.doi.org/10.1016/j.cbpc.2012.08.002
  • Birceanu O, Mai T, Vijayan MM. Maternal transfer of bisphenol A impacts the ontogeny of cortisol stress response in rainbow trout. Aquat Toxicol 2015; 168:11-8; PMID:26398930; http://dx.doi.org/10.1016/j.aquatox.2015.09.002
  • Ejaredar M, Lee Y, Roberts DJ, Sauve R, Dewey D. Bisphenol A exposure and children's behavior: A systematic review. J Expo Sci Environ Epidemiol 2016; PMID:26956939; http://dx.doi.org/10.1038/jes.2016.8
  • Poimenova A, Markaki E, Rahiotis C, Kitraki E. Corticosterone-regulated actions in the rat brain are affected by perinatal exposure to low dose of bisphenol A. Neuroscience 2010; 167:741-9; PMID:20219646; http://dx.doi.org/10.1016/j.neuroscience.2010.02.051
  • Panagiotidou E, Zerva S, Mitsiou DJ, Alexis MN, Kitraki E. Perinatal exposure to low-dose bisphenol A affects the neuroendocrine stress response in rats. J Endocrinol 2014; 220:207-18; PMID:24323913; http://dx.doi.org/10.1530/JOE-13-0416
  • Chen F, Zhou L, Bai Y, Zhou R, Chen L. Sex differences in the adult HPA axis and affective behaviors are altered by perinatal exposure to a low dose of bisphenol A. Brain Res 2014; 1571:12-24; PMID:24857958; http://dx.doi.org/10.1016/j.brainres.2014.05.010
  • Chen F, Zhou L, Bai Y, Zhou R, Chen L. Hypothalamic-pituitary-adrenal axis hyperactivity accounts for anxiety- and depression-like behaviors in rats perinatally exposed to bisphenol A. J Biomed Res 2015; 29:250-8; PMID:26060449
  • Kitraki E, Nalvarte I, Alavian-Ghavanini A, Ruegg J. Developmental exposure to bisphenol A alters expression and DNA methylation of Fkbp5, an important regulator of the stress response. Mol Cell Endocrinol 2015; 417:191-9; PMID:26427651; http://dx.doi.org/10.1016/j.mce.2015.09.028
  • Zhou R, Chen F, Feng X, Zhou L, Li Y, Chen L. Perinatal exposure to low-dose of bisphenol A causes anxiety-like alteration in adrenal axis regulation and behaviors of rat offspring: a potential role for metabotropic glutamate 2/3 receptors. J Psychiatr Res 2015; 64:121-9; PMID:25812946; http://dx.doi.org/10.1016/j.jpsychires.2015.02.018
  • Bowman RE, Luine V, Khandaker H, Villafane JJ, Frankfurt M. Adolescent bisphenol-A exposure decreases dendritic spine density: role of sex and age. Synapse 2014; 68:498-507; PMID:24975924; http://dx.doi.org/10.1002/syn.21758
  • Bowman RE, Luine V, Diaz Weinstein S, Khandaker H, DeWolf S, Frankfurt M. Bisphenol-A exposure during adolescence leads to enduring alterations in cognition and dendritic spine density in adult male and female rats. Horm Behav 2015; 69:89-97; PMID:25554518; http://dx.doi.org/10.1016/j.yhbeh.2014.12.007
  • McEwen BS, Gray JD, Nasca C. 60 YEARS OF NEUROENDOCRINOLOGY: Redefining neuroendocrinology: stress, sex and cognitive and emotional regulation. J Endocrinol 2015; 226:T67-83; PMID:25934706; http://dx.doi.org/10.1530/JOE-15-0121
  • Touma C, Gassen NC, Herrmann L, Cheung-Flynn J, Bull DR, Ionescu IA, Heinzmann JM, Knapman A, Siebertz A, Depping AM, et al. FK506 binding protein 5 shapes stress responsiveness: modulation of neuroendocrine reactivity and coping behavior. Biol Psychiatry 2011; 70:928-36; PMID:21907973; http://dx.doi.org/10.1016/j.biopsych.2011.07.023
  • Wochnik GM, Ruegg J, Abel GA, Schmidt U, Holsboer F, Rein T. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem 2005; 280:4609-16; PMID:15591061; http://dx.doi.org/10.1074/jbc.M407498200
  • Vermeer H, Hendriks-Stegeman BI, van der Burg B, van Buul-Offers SC, Jansen M. Glucocorticoid-induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: a potential marker for glucocorticoid sensitivity, potency, and bioavailability. J Clin Endocrinol Metab 2003; 88:277-84; PMID:12519866; http://dx.doi.org/10.1210/jc.2002-020354
  • Lee RS, Tamashiro KL, Yang X, Purcell RH, Harvey A, Willour VL, Huo Y, Rongione M, Wand GS, Potash JB. Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice. Endocrinology 2010; 151:4332-43; PMID:20668026; http://dx.doi.org/10.1210/en.2010-0225
  • Yang X, Ewald ER, Huo Y, Tamashiro KL, Salvatori R, Sawa A, Wand GS, Lee RS. Glucocorticoid-induced loss of DNA methylation in non-neuronal cells and potential involvement of DNMT1 in epigenetic regulation of Fkbp5. Biochem Biophys Res Commun 2012; 420:570-5; PMID:22445894; http://dx.doi.org/10.1016/j.bbrc.2012.03.035
  • Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, Pace TW, Mercer KB, Mayberg HS, Bradley B. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 2013; 16:33-41; PMID:23201972; http://dx.doi.org/10.1038/nn.3275
  • Fries GR, Vasconcelos-Moreno MP, Gubert C, dos Santos BT, Sartori J, Eisele B, Ferrari P, Fijtman A, Ruegg J, Gassen NC, et al. Hypothalamic-pituitary-adrenal axis dysfunction and illness progression in bipolar disorder. Int J Neuropsychopharmacol 2014; 18; PMID:25522387
  • Schmidt MV, Paez-Pereda M, Holsboer F, Hausch F. The prospect of FKBP51 as a drug target. ChemMedChem 2012; 7:1351-9; PMID:22581765; http://dx.doi.org/10.1002/cmdc.201200137
  • Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reproduct Toxicol 2007; 24:139-77; PMID:17825522; http://dx.doi.org/10.1016/j.reprotox.2007.07.010
  • Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ health Perspect 2008; 116:39-44; PMID:18197297; http://dx.doi.org/10.1289/ehp.10753
  • Pottenger LH, Domoradzki JY, Markham DA, Hansen SC, Cagen SZ, Waechter JM, Jr. The relative bioavailability and metabolism of bisphenol A in rats is dependent upon the route of administration. Toxicol Sci 2000; 54:3-18; PMID:10746927; http://dx.doi.org/10.1093/toxsci/54.1.3
  • Volkel W, Colnot T, Csanady GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chem Res Toxicol 2002; 15:1281-7; PMID:12387626; http://dx.doi.org/10.1021/tx025548t
  • Nishikawa M, Iwano H, Yanagisawa R, Koike N, Inoue H, Yokota H. Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus. Environ health Perspect 2010; 118:1196-203; PMID:20382578; http://dx.doi.org/10.1289/ehp.0901575
  • Mita L, Baldi A, Diano N, Viggiano E, Portaccio M, Nicolucci C, Grumiro L, Menale C, Mita DG, Spugnini EP, et al. Differential accumulation of BPA in some tissues of offspring of Balb-C mice exposed to different BPA doses. Environ Toxicol Pharmacol 2012; 33:9-15; PMID:22047638; http://dx.doi.org/10.1016/j.etap.2011.09.008
  • Doerge DR, Twaddle NC, Vanlandingham M, Brown RP, Fisher JW. Distribution of bisphenol A into tissues of adult, neonatal, and fetal Sprague-Dawley rats. Toxicol Appl Pharmacol 2011; 255:261-70; PMID:21820460; http://dx.doi.org/10.1016/j.taap.2011.07.009
  • Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Jr., Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378-455; PMID:22419778; http://dx.doi.org/10.1210/er.2011-1050
  • Delfosse V, Grimaldi M, le Maire A, Bourguet W, Balaguer P. Nuclear receptor profiling of bisphenol-A and its halogenated analogues. Vitam Horm 2014; 94:229-51; PMID:24388193; http://dx.doi.org/10.1016/B978-0-12-800095-3.00009-2
  • Ge LC, Chen ZJ, Liu HY, Zhang KS, Liu H, Huang HB, Zhang G, Wong CK, Giesy JP, Du J, et al. Involvement of activating ERK1/2 through G protein coupled receptor 30 and estrogen receptor alpha/beta in low doses of bisphenol A promoting growth of Sertoli TM4 cells. Toxicol Lett 2014; 226:81-9; PMID:24495410; http://dx.doi.org/10.1016/j.toxlet.2014.01.035
  • Kang NH, Hwang KA, Lee HR, Choi DW, Choi KC. Resveratrol regulates the cell viability promoted by 17beta-estradiol or bisphenol A via down-regulation of the cross-talk between estrogen receptor alpha and insulin growth factor-1 receptor in BG-1 ovarian cancer cells. Food Chem Toxicol 2013; 59:373-9; PMID:23810794; http://dx.doi.org/10.1016/j.fct.2013.06.029
  • Kochukov MY, Jeng YJ, Watson CS. Alkylphenol xenoestrogens with varying carbon chain lengths differentially and potently activate signaling and functional responses in GH3/B6/F10 somatomammotropes. Environ health Perspect 2009; 117:723-30; PMID:19479013; http://dx.doi.org/10.1289/ehp.0800182
  • Tanabe N, Kimoto T, Kawato S. Rapid Ca(2+) signaling induced by Bisphenol A in cultured rat hippocampal neurons. Neuro Endocrinol Lett 2006; 27:97-104; PMID:16648781
  • Li X, Zhang S, Safe S. Activation of kinase pathways in MCF-7 cells by 17beta-estradiol and structurally diverse estrogenic compounds. J Steroid Biochem Mol Biol 2006; 98:122-32; PMID:16413991; http://dx.doi.org/10.1016/j.jsbmb.2005.08.018
  • Noguchi S, Nakatsuka M, Asagiri K, Habara T, Takata M, Konishi H, Kudo T. Bisphenol A stimulates NO synthesis through a non-genomic estrogen receptor-mediated mechanism in mouse endothelial cells. Toxicol Lett 2002; 135:95-101; PMID:12243868; http://dx.doi.org/10.1016/S0378-4274(02)00252-7
  • Takayanagi S, Tokunaga T, Liu X, Okada H, Matsushima A, Shimohigashi Y. Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor gamma (ERRgamma) with high constitutive activity. Toxicol Lett 2006; 167:95-105; PMID:17049190; http://dx.doi.org/10.1016/j.toxlet.2006.08.012
  • Tohme M, Prud'homme SM, Boulahtouf A, Samarut E, Brunet F, Bernard L, Bourguet W, Gibert Y, Balaguer P, Laudet V. Estrogen-related receptor gamma is an in vivo receptor of bisphenol A. FASEB J 2014; 28:3124-33; PMID:24744145; http://dx.doi.org/10.1096/fj.13-240465
  • Giguere V. To ERR in the estrogen pathway. Trends Endocrinol Metab 2002; 13:220-5; PMID:12185669; http://dx.doi.org/10.1016/S1043-2760(02)00592-1
  • Sargis RM, Johnson DN, Choudhury RA, Brady MJ. Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation. Obesity 2010; 18:1283-8; PMID:19927138; http://dx.doi.org/10.1038/oby.2009.419
  • Patisaul HB, Bateman HL. Neonatal exposure to endocrine active compounds or an ERbeta agonist increases adult anxiety and aggression in gonadally intact male rats. Horm Behav 2008; 53:580-8; PMID:18308321; http://dx.doi.org/10.1016/j.yhbeh.2008.01.008
  • Xu X, Hong X, Xie L, Li T, Yang Y, Zhang Q, Zhang G, Liu X. Gestational and lactational exposure to bisphenol-A affects anxiety- and depression-like behaviors in mice. Horm Behav 2012; 62:480-90; PMID:23240141; http://dx.doi.org/10.1016/j.yhbeh.2012.08.005
  • Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Sutoh C, Nakazawa K, Amano K, Sajiki J, Shimizu E. Effects of perinatal exposure to low dose of bisphenol A on anxiety like behavior and dopamine metabolites in brain. Prog Neuro-psychopharmacol Biol Psychiatry 2012; 39:273-9; PMID:22760093; http://dx.doi.org/10.1016/j.pnpbp.2012.06.016
  • Gioiosa L, Parmigiani S, Vom Saal FS, Palanza P. The effects of bisphenol A on emotional behavior depend upon the timing of exposure, age and gender in mice. Horm Behav 2013; 63:598-605; PMID:23470777; http://dx.doi.org/10.1016/j.yhbeh.2013.02.016
  • Diaz Weinstein S, Villafane JJ, Juliano N, Bowman RE. Adolescent exposure to Bisphenol-A increases anxiety and sucrose preference but impairs spatial memory in rats independent of sex. Brain Res 2013; 1529:56-65; PMID:23872220; http://dx.doi.org/10.1016/j.brainres.2013.07.018
  • Negishi T, Kawasaki K, Suzaki S, Maeda H, Ishii Y, Kyuwa S, Kuroda Y, Yoshikawa Y. Behavioral alterations in response to fear-provoking stimuli and tranylcypromine induced by perinatal exposure to bisphenol A and nonylphenol in male rats. Environ health Perspect 2004; 112:1159-64; PMID:15289160; http://dx.doi.org/10.1289/ehp.6961
  • Fujimoto T, Kubo K, Aou S. Prenatal exposure to bisphenol A impairs sexual differentiation of exploratory behavior and increases depression-like behavior in rats. Brain Res 2006; 1068:49-55; PMID:16380096; http://dx.doi.org/10.1016/j.brainres.2005.11.028
  • Fujimoto T, Kubo K, Nishikawa Y, Aou S. Postnatal exposure to low-dose bisphenol A influences various emotional conditions. J Toxicol Sci 2013; 38:539-46; PMID:23824010; http://dx.doi.org/10.2131/jts.38.539
  • Ryan BC, Vandenbergh JG. Developmental exposure to environmental estrogens alters anxiety and spatial memory in female mice. Horm Behav 2006; 50:85-93; PMID:16540110; http://dx.doi.org/10.1016/j.yhbeh.2006.01.007
  • Miyagawa K, Narita M, Narita M, Akama H, Suzuki T. Memory impairment associated with a dysfunction of the hippocampal cholinergic system induced by prenatal and neonatal exposures to bisphenol-A. Neurosci Lett 2007; 418:236-41; PMID:17467901; http://dx.doi.org/10.1016/j.neulet.2007.01.088
  • Farabollini F, Porrini S, Dessi-Fulgherit F. Perinatal exposure to the estrogenic pollutant bisphenol A affects behavior in male and female rats. Pharmacol Biochem Beha 1999; 64:687-94; PMID:10593191; http://dx.doi.org/10.1016/S0091-3057(99)00136-7
  • Tian YH, Baek JH, Lee SY, Jang CG. Prenatal and postnatal exposure to bisphenol a induces anxiolytic behaviors and cognitive deficits in mice. Synapse 2010; 64:432-9; PMID:20169576; http://dx.doi.org/10.1002/syn.20746
  • Jones BA, Watson NV. Perinatal BPA exposure demasculinizes males in measures of affect but has no effect on water maze learning in adulthood. Horm Behav 2012; 61:605-10; PMID:22370244; http://dx.doi.org/10.1016/j.yhbeh.2012.02.011
  • Ohno S, Nakajima Y, Inoue K, Nakazawa H, Nakajin S. Genistein administration decreases serum corticosterone and testosterone levels in rats. Life Sci 2003; 74:733-42; PMID:14654166; http://dx.doi.org/10.1016/j.lfs.2003.04.006
  • Chang LL, Wun WS, Wang PS. In utero and neonate exposure to nonylphenol develops hyperadrenalism and metabolic syndrome later in life. I. First generation rats (F(1)). Toxicology 2012; 301:40-9; PMID:22765982; http://dx.doi.org/10.1016/j.tox.2012.06.017
  • Boyle MP, Brewer JA, Funatsu M, Wozniak DF, Tsien JZ, Izumi Y, Muglia LJ. Acquired deficit of forebrain glucocorticoid receptor produces depression-like changes in adrenal axis regulation and behavior. Proc Natl Acad Sci U S A 2005; 102:473-8; PMID:15623560; http://dx.doi.org/10.1073/pnas.0406458102
  • Vallee M, Mayo W, Dellu F, Le Moal M, Simon H, Maccari S. Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 1997; 17:2626-36; PMID:9065522
  • Kundakovic M, Gudsnuk K, Franks B, Madrid J, Miller RL, Perera FP, Champagne FA. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci U S A 2013; 110:9956-61; PMID:23716699; http://dx.doi.org/10.1073/pnas.1214056110
  • Eiland L, Romeo RD. Stress and the developing adolescent brain. Neuroscience 2013; 249:162-71; PMID:23123920; http://dx.doi.org/10.1016/j.neuroscience.2012.10.048
  • Viau V. Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. J Neuroendocrinol 2002; 14:506-13; PMID:12047726; http://dx.doi.org/10.1046/j.1365-2826.2002.00798.x
  • Tetel MJ, Pfaff DW. Contributions of estrogen receptor-alpha and estrogen receptor-ss to the regulation of behavior. Biochim Biophys Acta 2010; 1800:1084-9; PMID:20097268; http://dx.doi.org/10.1016/j.bbagen.2010.01.008
  • Lund TD, Rovis T, Chung WC, Handa RJ. Novel actions of estrogen receptor-beta on anxiety-related behaviors. Endocrinology 2005; 146:797-807; PMID:15514081; http://dx.doi.org/10.1210/en.2004-1158
  • Akingbemi BT, Sottas CM, Koulova AI, Klinefelter GR, Hardy MP. Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology 2004; 145:592-603; PMID:14605012; http://dx.doi.org/10.1210/en.2003-1174
  • Khurana S, Ranmal S, Ben-Jonathan N. Exposure of newborn male and female rats to environmental estrogens: delayed and sustained hyperprolactinemia and alterations in estrogen receptor expression. Endocrinology 2000; 141:4512-7; PMID:11108262
  • Morrison KE, Rodgers AB, Morgan CP, Bale TL. Epigenetic mechanisms in pubertal brain maturation. Neuroscience 2014; 264:17-24; PMID:24239720; http://dx.doi.org/10.1016/j.neuroscience.2013.11.014
  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16:6-21; PMID:11782440; http://dx.doi.org/10.1101/gad.947102
  • Kundakovic M, Gudsnuk K, Herbstman JB, Tang D, Perera FP, Champagne FA. DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci U S A 2014; PMID:25385582
  • Wolstenholme JT, Edwards M, Shetty SR, Gatewood JD, Taylor JA, Rissman EF, Connelly JJ. Gestational exposure to bisphenol a produces transgenerational changes in behaviors and gene expression. Endocrinology 2012; 153:3828-38; PMID:22707478; http://dx.doi.org/10.1210/en.2012-1195
  • Doshi T, D'Souza C, Dighe V, Vanage G. Effect of neonatal exposure on male rats to bisphenol A on the expression of DNA methylation machinery in the postimplantation embryo. J Biochem Mol Toxicol 2012; 26:337-43; PMID:22730197; http://dx.doi.org/10.1002/jbt.21425
  • Liu Y, Duong W, Krawczyk C, Bretschneider N, Borbely G, Varshney M, Zinser C, Schar P, Ruegg J. Oestrogen receptor beta regulates epigenetic patterns at specific genomic loci through interaction with thymine DNA glycosylase. Epigenetics Chromatin 2016; 9:7; PMID:26889208; http://dx.doi.org/10.1186/s13072-016-0055-7