962
Views
1
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Artificial neural network prediction and grey relational grade optimisation of friction stir processing

, &
Article: 2107760 | Received 17 Jun 2022, Accepted 26 Jul 2022, Published online: 15 Feb 2023

References

  • Abu Shanab, W. S., Abd Elaziz, M., Ghandourah, E. I., Moustafa, E. B., & Elsheikh, A. H. (2021). A new fine-tuned random vector functional link model using Hunger games search optimizer for modeling friction stir welding process of polymeric materials. Journal of Materials Research and Technology, 14, 1482–25. https://doi.org/10.1016/j.jmrt.2021.07.031
  • Aydin, H., Bayram, A., Esme, U., Kazancoglu, Y., & Guven, O. (2010). Application of grey relation analysis (GRA) and Taguchi method for the parametric optimization of friction stir welding (FSW) process. Material in Technology, 44, 205–211.
  • Deng, L. (2014). Deep learning: Methods and applications. Foundations and Trends® in Signal Processing, 7(3–4), 197–387. https://doi.org/10.1561/2000000039
  • Dey, A., Debnath, S., & Pandey, K. M. (2017). Optimization of electrical discharge machining process parameters for Al6061/cenosphere composite using grey-based hybrid approach. Transactions of Nonferrous Metals Society of China, 27(5), 998–1010. https://doi.org/10.1016/S1003-6326(17)60117-1
  • Elgohary, M. A., El-Souhily, B. M., Rezeka, S. F., & Awad, T. (2011). Generalized neural inverse dynamics model for front-wheel mid-size passenger car. The International Review of Mechanical Engineering, 5(3), 474–482. https://www.researchgate.net/publication/288462205
  • Elsheikh, A. H., Abd Elaziz, M., Das, S. R., Muthuramalingam, T., & Lu, S. (2021). A new optimized predictive model based on political optimizer for eco-friendly MQL-turning of AISI 4340 alloy with nano-lubricants. Journal of Manufacturing Processes, 67, 562–578. https://doi.org/10.1016/j.jmapro.2021.05.014
  • Elsheikh, A. H., Abd Elaziz, M., & Vendan, A. (2022). Modeling ultrasonic welding of polymers using an optimized artificial intelligence model using a gradient-based optimizer. Welding in the World, 66(1), 27–44. https://doi.org/10.1007/s40194-021-01197-x
  • Elsheikh, A. H., Katekar, V. P., Muskens, O. L., Deshmukh, S. S., Abd Elaziz, M., & Dabour, S. M. (2021). Utilization of LSTM neural network for water production forecasting of a stepped solar still with a corrugated absorber plate. Process Safety and Environmental Protection, 148, 273–282. https://doi.org/10.1016/j.psep.2020.09.068
  • Elsheikh, A. H., Muthuramalingam, T., Abd Elaziz, M., Ibrahim, A. M. M., & Showaib, E. A. (2022). Minimization of fume emissions in laser cutting of polyvinyl chloride sheets using genetic algorithm. International Journal of Environmental Science and Technology, 19(7), 6331–6344. https://doi.org/10.1007/s13762-021-03566-x
  • Elsheikh, A. H., Panchal, H., Ahmadein, M., Mosleh, A. O., Sadasivuni, K. K., & Alsaleh, N. A. (2021). Productivity forecasting of solar distiller integrated with evacuated tubes and external condenser using artificial intelligence model and moth-flame optimizer. Case Studies in Thermal Engineering, 28, 101671. https://doi.org/10.1016/j.csite.2021.101671
  • Elsheikh, A. H., Sharshir, S. W., Abd Elaziz, M., Kabeel, A. E., Guilan, W., & Haiou, Z. (2019). Modeling of solar energy systems using artificial neural network: A comprehensive review. Solar Energy, 180, 622–639. https://doi.org/10.1016/j.solener.2019.01.037
  • Elsheikh, A. H., Shehabeldeen, T. A., Zhou, J., Showaib, E., & Abd Elaziz, M. (2021). Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer. Journal of Intelligent Manufacturing, 32(5), 1377–1388. https://doi.org/10.1007/s10845-020-01617-7
  • Girish, B. M., Satish, B. M., & Sadananda Sarapure, B. (2016). Optimization of wear behaviour of magnesium alloy AZ91 hybrid composites using Taguchi experimental design. Metallurgical and Materials Transactions, 47A(3), 193–3200. https://link.springer.com/article/10.1007/s11661-016-3447-1
  • Girish, B. M., Siddesh, H. S., & Satish, B. M. (2019). Taguchi grey relational analysis for parametric optimization of severe plastic deformation process. SN Applied Sciences, 1(8), 937. https://doi.org/10.1007/s42452-019-0982-6
  • H, E. A., Muthuramalingam, T., Shanmugan, S., Ahmed Mohamed Mahmoud Ibrahim, B. R., Khoshaim, A. B., Moustafa, E. B., Bedairi, B., Panchal, H., & Sathyamurthy, R. (2021). Fine-tuned artificial intelligence model using pigeon optimizer for prediction of residual stresses during turning of Inconel 718. Journal of Materials Research and Technology (15), 3622–3634. https://doi.org/10.1016/j.jmrt.2021.09.119
  • Hashmi, A. W., Mehdi, H., Mabuwa, S., Msomi, V., & Mohapatra, P. (2022). Influence of FSP parameters on wear and microstructural characterization of dissimilar TIG welded joints with Si-rich filler metal. Silicon, 1–15. https://link.springer.com/article/10.1007/s12633-022-01848-8
  • Hashmi, A. W., Mehdi, H., Mabuwa, S., Msomi, V., & Mohapatra, P. (2022). Influence of FSP parameters on wear and microstructural characterization of dissimilar TIG welded joints with Si-rich filler metal. Silicon, 1–15. https://doi.org/10.1007/s12633-022-01848-8
  • Hashmi, A. W., Mehdi, H., Mishra, R. S., Mohapatra, P., Kant, N., & Kumar, R. (2022). Mechanical properties and microstructure evolution of AA6082/sic nanocomposite processed by multi-pass FSP. Transactions of the Indian Institute of Metals, 1–14. https://link.springer.com/article/10.1007/s12666-022-02582-w
  • Husain, M., & Mishra, R. S. (2020). Influence of friction stir processing on weld temperature distribution and mechanical properties of TIG-welded joint of AA6061 and AA7075. Transactions of the Indian Institutes of Metal, 73(7), 1773–1788. https://doi.org/10.1007/s12666-020-01994-w
  • Husain, M., & Mishra, R. S. (2021). Effect of multi-pass friction stir processing and SiC nanoparticles on microstructure and mechanical properties of AA6082-T6. Advances in Industrial and Manufacturing Engineering, 3, 100062. https://doi.org/10.1016/j.aime.2021.100062
  • Kalaivani, R., Sudhagar, K., & Lakshmi, P. (2016). Neural network based vibration control for vehicle active suspension system. Indian Journal Science & Technology, 9(1), 1–8. https://doi.org/10.17485/ijst/2016/v9i1/83806
  • Khalil, M. F., El-gohary, M. A., & Shaito, A. A. (2013). Application of Artificial neural network for the prediction of trimmed impeller size of a centrifugal pump. In: Eleventh International Conference of Fluid Dynamics, Alexandria, Egypt. Proceedings of ICFD11, 1–6.
  • Khoshaim, A. B., Moustafa, E. B., Bafakeeh, O. T., & Elsheikh, A. H. (2021). An optimized multilayer perceptrons model using grey wolf optimizer to predict mechanical and microstructural properties of friction stir processed aluminum alloy reinforced by nanoparticles. Coatings, 11(12), 1476. https://doi.org/10.3390/coatings11121476
  • Kumar, A. R., Varghese, S., & Sivapragash, M. (2012). A comparative study of the mechanical properties of single and double sided friction stir welded aluminium joints. Procedia Engineering, 38, 3951–3961. https://doi.org/10.1016/j.proeng.2012.06.452
  • Manvatkar, V. D., Arora, A., De, A., & DebRoy, T. (2012). Neural network models of peak temperature, torque, traverse force, bending stress and maximum shear stress during friction stir welding. Science and Technology of Welding and Joining, 17(6), 460–466. https://doi.org/10.1179/1362171812Y.0000000035
  • Marconcini, M., Checcucci, M., & Sazzini, F. (2011). Assessment of a neural-network-based optimization tool: A low specific-speed impeller application. International Journal of Rotating Machinery. https://doi.org/10.1155/2011/817547
  • Marichamy, S., Saravanan, M., Ravichandran, M., & Veerappan, G. (2016). Parametric optimization of electrical discharge machining process on α–β brass using grey relational analysis. Journal of Materials Research, 31(16), 2531–2537. https://doi.org/10.1557/jmr.2016.213
  • McNelley, T. R. (2011). Friction stir processing (FSP): Refining microstructures and improving properties. Revista de Metalurgia, 46, 149–156. https://doi.org/10.3989/revmetalmadrid.19XIIPMS
  • Mehdi, H., Mehmood, A., Chinchkar, A., Wahab Hashmi, A., Malla, C., & Mohapatra, P. (2022). Optimization of process parameters on the mechanical properties of AA6061/Al2O3 nanocomposites fabricated by multi-pass friction stir processing. Materialstoday Proceedings, 56(4), 1995–2003. https://doi.org/10.1016/j.matpr.2021.11.333
  • Mehdi, H., & Mishra, R. S. (2020). An experimental analysis and optimization of process parameters of AA6061 and AA7075 welded joint by TIG+ FSP welding using RSM. Advances in Materials and Processing Technologies, 1–23. https://doi.org/10.1080/2374068X.2020.1829952
  • Mehdi, H., & Mishra, R. S. (2021a). Consequence of reinforced SiC particles on microstructural and mechanical properties of AA6061 surface composites by multi-pass FSP. Journal of Adhesion Science and Technology, 361, 1279–1298. https://doi.org/10.1080/01694243.2021.1964846
  • Mehdi, H., & Mishra, R. S. (2021b). Effect of friction stir processing on mechanical properties and wear resistance of tungsten inert gas welded joint of dissimilar aluminum alloys. Journal of Materials Engineering and Performance, 30(3), 1926–1937. https://doi.org/10.1007/s11665-021-05549-y
  • Mehdi, H., & Mishra, R. S. (2021c). Microstructure and mechanical characterization of tungsten inert gas-welded joint of AA6061 and AA7075 by friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Application, 235(11), 2531–2546. https://doi.org/10.1177/14644207211007882
  • Montgomery, D. C. (2017). Design and analysis of experiments/Douglas C. Montgomery (Ninth ed.). John Wiley & Sons, Inc.
  • Moustafa, E. B., Hammad, A. H., & Elsheikh, A. H. (2022). A new optimized artificial neural network model to predict thermal efficiency and water yield of tubular solar still. Case Studies in Thermal Engineering, 30, 101750. https://doi.org/10.1016/j.csite.2021.101750
  • Na, M. G., Kim, J. W., Lim, D. H., & Kang, Y. J. (2008). Residual stress prediction of dissimilar metals welding at NPPs using support vector regression. Nuclear Engineering and Design, 238(7), 1503–1510. https://doi.org/10.1016/j.nucengdes.2007.12.003
  • Nagarkar, M. P., El-Gohary, M. A., Bhalerao, Y. J., Vikhe Patil, G. J., & Zaware Patil, R. N. (2019). Artificial neural network predication and validation of optimum suspension parameters of a passive suspension system. SN Applied Sciences, 1(6), 1–17. https://doi.org/10.1007/s42452-019-0550-0
  • Okuyucu, H., Kurt, A., & Arcaklioglu, E. (2007). Artificial neural network application to the friction stir welding of aluminum plates. Materials & Design, 28(1), 78–84. https://doi.org/10.1016/j.matdes.2005.06.003
  • Pal, M., & Deswal, S. (2010). Modelling pile capacity using Gaussian process regression. Computers and Geotechnics, 37(7–8), 942–947. https://doi.org/10.1016/j.compgeo.2010.07.012
  • Periasamy, K., Jayaraman, M., & Rajkumar, S. (2019). Mechanical properties of 7075-t6 aluminium alloy surface hybrid composites synthesised by friction stir processing. International Journal of Rapid Manufacturing, 8(1/2), 52–64. https://doi.org/10.1504/IJRAPIDM.2019.097025
  • Rajakumar, S., & Alasubramanian B, V. (2012). Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters. Materials Design, 40, 17–35. https://doi.org/10.1016/j.matdes.2012.02.054
  • Sahu, S. N., Neural Network Modelling and Multi-Objective Optimization of EDM Process. MTech Thesis, NIT Rourkela, 2012.
  • Salah, A. N., Mabuwa, S., Mehdi, H., Msomi, V., Kaddami, M., & Mohapatra, P. (2022). Effect of multipass FSP on Si-rich TIG welded joint of dissimilar aluminum alloys AA8011-H14 and AA5083-H321: EBSD and microstructural evolutions. Silicon, 1–17.
  • Salah, A. N., Mehdi, H., Mehmood, A., Hashmi, W. A., Malla, C., & Ravi kumar. (2022). “Optimization of process parameters of friction stir welded joints of dissimilar aluminum alloys AA3003 and AA6061 by RSM.” Materials Today: Proceedings, 56, 1675–1683. https://doi.org/10.1016/j.matpr.2021.10.288
  • Shojaeefard, M. H., Khalkhali, A., Akbari, M., & Asadi, P. (2015). Investigation of friction stir welding tool parameters using FEM and neural network. Institution of Mechanical Engineers, Part L: Journal of Materials, 229(3), 209–217. https://doi.org/10.1177/1464420713509075
  • Sun, N., & Apelian, D. (2009). Microstructural modification of A206 aluminium via friction stir processing. Materials Science Forum, 618619, 361–364. https://doi.org/10.4028/www.scientific.net/MSF.618-619.361
  • Venkateshwar Reddy, P., Ramanjaneyulu, P., Veerabhadra Reddy, B., & Srinivasa Rao, P. (2020). Simultaneous optimization of drilling responses using GRA on Al-6063/TiC composite. SN Applied Sciences, 2(3), 431. https://doi.org/10.1007/s42452-020-2214-5
  • Verma, S. M., & Misra, J. P. (2017). Study on temperature distribution during friction stir welding of 6082 aluminum alloy. Materials Today: Proceedings, 4(2), 1350–1356. https://doi.org/10.1016/j.matpr.2017.01.156
  • Vignesh, R. V., & Padmanaban, R. (2018). Artificial neural network model for predicting the tensile strength of friction stir welded aluminium alloy AA1100. Materials Today: Proceedings, 5(8), 16716–16723. https://doi.org/10.1016/j.matpr.2018.06.035
  • Vijayan, S., Raju, R., & Rao, S. R. K. (2010). Multi objective optimization of friction stir welding process parameters on aluminum alloy AA 5083 using taguchi-based grey relation analysis, mater. Journal of Manufacturing Processes, 25(11), 1206–1212. https://doi.org/10.1080/10426910903536782
  • Wable, A. D., & Patil, S. B. (2021). Experimental investigation of mechanical properties of AA 7075-T6 by friction stir processing. Recent Advances in Manufacturing Processes and Systems, 465–477. https://link.springer.com/chapter/10.1007/978-981-16-7787-8_37
  • Wang, Y., Sun, Y., Lv, P., & Wang, H. (2008). Detection of line weld defects based on multiple thresholds and support vector machine. NDT & E International: Independent Nondestructive Testing and Evaluation, 41(7), 517–524. https://doi.org/10.1016/j.ndteint.2008.05.004
  • Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine learning in manufacturing: Advantages, challenges, and applications. Production and Manufacturing Research, 4(1), 23–45. https://doi.org/10.1080/21693277.2016.1192517
  • Yelamasetti, B., Venkat Ramana, G., & Vishnu Vardhan, T. (2021). Optimization of GTAW parameters for the development of dissimilar AA5052 and AA6061 joints. Materials Today: Proceedings, 47(14), 4350–4356. https://doi.org/10.1016/j.matpr.2021.04.633
  • Yousif, Y. K., Daws, K. M., & Kazem, B. I. (2008). Prediction of friction stir welding characteristic using neural network. Jordan Journal of Mechanical and Industrial Engineering, 2(3), 151–155.