982
Views
2
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Bio-oil production via fast pyrolysis of cassava residues combined with ethanol and volcanic rock in a free-fall reactor

ORCID Icon, , , , , ORCID Icon & show all
Article: 2156054 | Received 31 Mar 2022, Accepted 29 Nov 2022, Published online: 16 Dec 2022

References

  • Bunopas, S., Paleogeographic history of western Thailand and adjacent parts of South-East Asia A plate tectonics interpretation: Ph.D. Thesis, Victoria University of Wellington, New Zealand, 810 p; reprinted 1982, Geological Survey Paper No. 5, Geological Survey Division, Department of Mineral Resources, Thailand, 1981.
  • Colella, C. (2005). Natural zeolites. J. Ĉejka & H. van Bekkum(Eds.), Studies in surface science and catalysis. (Vol. Vol. 157, pp. 13–10). Elsevier. https://doi.org/10.1016/S0167-2991(05)80004-7
  • Czernik, S., & Bridgwater, A. V. (2004). Overview of applications of biomass fast pyrolysis oil. Energy & Fuels: an American Chemical Society Journal, 18(2), 590–598. https://doi.org/10.1021/ef034067u
  • Department of Mineral Resources, Ministry of Natural Resources and Environment., 2016, Geology of Thailand. http://www.dmr.go.th/main.php?filename=GeoThai_En
  • Elkhalifa, S., Mackey, H. R., Al-Ansari, T., & McKay, G. (2022). Pyrolysis of biosolids to produce biochars: a review. Sustainability, 14(15), 9626. https://doi.org/10.3390/su14159626
  • Goettemoeller, J., & Goettemoeller, A. (2007). Sustainable ethanol: Biofuels, biorefineries, cellulosic biomass, flex-fuel vehicles, and sustainable farming for energy Independence (Brief and comprehensive account of the history, evolution and future of ethanol). Prairie Oak Publishing.
  • Goldbook, P. A. C., Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials. IUPAC Recommendations, 2007, from https://goldbook.iupac.org/html/P/P04961.html, accessed on 10-Jan-2022
  • Goodacre, R., & Kell, D. B. (1997). Pyrolysis mass spectrometry and its applications in biotechnology. Current Opinion in Biotechnology, 7(1), 20–28. https://doi.org/10.1016/S0958-1669(96)80090-5
  • IEA Bioenergy. (2022), Task 34, https://task34.ieabioenergy.com/bio-oil/
  • Kramer, C. A., Loloee, R., Wichman, I. S., & Ghosh, R. N., Time resolved measurements of pyrolysis products from thermoplastic poly-methyl-methacrylate(PMMA). ASME 2009 International Mechanical Engineering Congress and Exposition, from https://virtual.vtt.fi/virtual/innofirewood/stateoftheart/database/burning/burning.html, accessed on 11-Feb-2022
  • Lehto, J., Oasmaa, A., Solantausta, Y., Kytö, M., & Chiaramonti, D. (2014). Fuel oil quality and combustion of fast pyrolysis bio-oils. VTT Technology, 87, 79. https://www.vttresearch.com/sites/default/files/pdf/technology/2013/T87.pdf
  • Mishra, R. K., & Mohanty, K. (2020). Effect of low-cost catalysts on yield and properties of fuel from waste biomass for hydrocarbon-rich oil production. Materials Science for Energy Technologies, 3, 526–535. https://doi.org/10.1016/j.mset.2020.05.007
  • Nutalaya, P. (1973). Igneous rocks of Thailand: The geology of Thailand. 1975, 143–154. https://doi.org/10.1016/j.chemosphere.2021.129537
  • Oasmaa, A., & Peacocke, C. (2010). Properties and fuel use of biomass derived fast pyrolysis liquids. A guide. VTT Publications, 731, 79–87. https://publications.vtt.fi/pdf/publications/2010/P731.pdf
  • Ochoa, A., Bilbao, J., Gayubo, A. G., & Castaño, P. (2020). Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review. Renewable and Sustainable Energy Reviews, 119, 109600. https://doi.org/10.1016/j.rser.2019.109600
  • Pattiya, A., Sukkasi, S., & Goodwin, V. (2012). Fast pyrolysis of sugarcane and cassava residues in a free-fall reactor. Energy, 44(1), 1067–1077. https://doi.org/10.1016/j.energy.2012.04.035
  • Rueangsan, K., Duanguppama, K., Kraisoda, P., Turakarn, C., & Chaiphet, K. (2017). Effect of fast pyrolysis of residues rubber trees (Hevea Brasiliensis) on product yield and the properties of bio-oil. UDRU Science and Technology Journal, 5(1), 113–124. Thai version
  • Rueangsan, K., Suwapaet, N., & Pattiya, A. (2018). Bio-oil production by fast pyrolysis of cassava residues in a free-fall reactor using liquid media-assisted condensation. Energy Source Part A, 40(6), 615–622. https://doi.org/10.1080/15567036.2018.1440874
  • Rueangsan, K., Trisupakitti, S., Senajuk, W., & Morris, J. (2022). Fast pyrolysis of Dipterocarpus alatus Roxb and rubber wood in a free-fall reactor, Energy Sources, Part A: Recovery. Utilization, and Environmental Effects, 44(1), 2489–2496. https://doi.org/10.1080/15567036.2019.1649760
  • Seiple, T. E., Coleman, A. M., & Skaggs, R. L. (2017). Municipal wastewater sludge as a sustainable bioresource in the United States. Journal of Environmental Management, 197, 673–680. https://doi.org/10.1016/j.jenvman.2017.04.032
  • Shrivastava, P., Kumar, A., Tekasakul, P., Lam, S. S., & Palamanit, A. (2021). Comparative Investigation of Yield and Quality of Bio-Oil and Biochar from Pyrolysis of Woody and Non-Woody Biomasses. Energies, 14, 1092. https://doi.org/10.3390/en14041092
  • Suttibak, S., Sriprateep, K., & Pattiya, A. (2012). Production of bio-oil via fast pyrolysis of cassava rhizome in a fluidised-bed reactor. Energy Procedia, 14, 668–673. https://doi.org/10.1016/j.egypro.2011.12.993
  • Thanasuthipitak, T., (1978). A review of igneous rocks of Thailand: Proceedings of the Third Regional Conference on Geology and Mineral Resources of Southeast Asia. 775–782.
  • Wu, Y., Wang, H., Li, H., Han, X., Zhang, M., Sun, Y., Fan, X., Tu, R., Zeng, Y., Xu, C. C., & Xu, X. (2022). Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review. Renewable Energy, 196, 462–481. https://doi.org/10.1016/j.renene.2022.07.031
  • Yogalakshmi, K. N., Poornima Devi, T., Sivashanmugam, P., Kavitha, S., Yukesh Kannah, R., Sunita Varjani, S., Gopalakrishnan Kumar, A., Rajesh Banu, J., & J, R. B. (2022). Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere, 286(2), 131824. https://doi.org/10.1016/j.chemosphere.2021.131824