811
Views
1
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Effect of inlet and outlet angles on the flow performance of the ferrofluidic magnetic micropump

, , &
Article: 2158611 | Received 13 Sep 2022, Accepted 09 Dec 2022, Published online: 02 Jan 2023

References

  • Al Halhouli, A., Kilani, M., Waldschik, A., Phataralaoha, A., & B¨uttgenbach, S. (2012). “Development and testing of a synchronous micropump based on electroplated coils and microfabricated polymer,” magnets. Journal of Micromechanics and Microengineering, 22(6), 065,027. https://doi.org/10.1088/0960-1317/22/6/065027
  • Alrifaiy, A., Lindahl, O. A., & Ramser, K. (2012). Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers, 4(3), 1349–17. https://doi.org/10.3390/polym4031349
  • Aluri, S. (1999). Hemolysis induced by mechanical heart valve closure. The University of Iowa.
  • Archer, R. A., & Mandviwalla, X. 2007. CFD as a design tool for a conducting polymer micropump. Proc. of the 16th Australasian Fluid Mechanics Conference, 16AFMC pp. 803–806
  • Ayala, M., & Cimbala, J. M., 2021. Numerical approach for prediction of turbulent flow resistance coefficient of 90° pipe bends. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(2), pp.351–360.
  • Bußmann, A. B., Grünerbel, L. M., Durasiewicz, C. P., Thalhofer, T. A., Wille, A., & Richter, M. (2021). Microdosing for drug delivery application—A review. Sensors and Actuators, A: Physical, 330, 112820. https://doi.org/10.1016/j.sna.2021.112820
  • Darabi, J., & Rhodes, C. 2005. CFD modeling of an ion-drag micropump. Sensors and Actuators, A: Physical, 127(1), 94–103. https://doi.org/10.1016/j.sna.2005.10.051
  • Duan, B., Guo, T., Luo, M., & Luo, X., “A mechanical micropump for electronic cooling,” Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2014, pp. 1038–1042. https://doi.org/10.1109/ITHERM.2014.6892395
  • Felfoul, O., Becker, A., Bergeles, C., & Dupont, P. E. (2015). Achieving commutation control of an MRI-powered robot actuator. IEEE Transactions on Robotics, 31(2), 387–399. https://doi.org/10.1109/TRO.2015.2407795
  • Fu, L.-M., Fang, W.-C., Hong, T.-F., & Lee, C.-Y. (2014). A magnetic micropump based on ferrofluidic actuation. International Journal of Automation and Smart Technology, 4(2), , 77–82. https://doi.org/10.5875/ausmt.v4i2.311
  • Gareeva, R. G., Sypin, E. V., Lukjanov, M. V., Povemov, E. S., Kirpichnikov, A. N., & Leonov, G. V., 2003, July. Research of an opportunity of recognition of condition of the step motor jamming and slippage under the characteristics of controlling currents. In 2003 Siberian Russian Workshop on Electron Devices and Materials. Proceedings. 4th Annual (IEEE Cat. No. 03EX664) (pp. 236–241). IEEE.
  • Gregory, S. D., Stevens, M. C., & Fraser, J. F., Ed. (2018). Mechanical circulatory and respiratory support. 301–334. https://www.elsevier.com/books/mechanical-circulatory-and-respiratory-support/gregory/978-0-12-810491-0
  • Gusenbauer, M., Mazza, G., Posnicek, T., Brandl, M., & Schrefl, T. (2018). Magnetically actuated circular displacement micropump. The International Journal of Advanced Manufacturing Technology, 95(9–12), 3575–3588. https://doi.org/10.1007/s00170-017-1440-5
  • Halhouli, A., Kilani, M., & Büttgenbach, S. (2010). Development of a novel electromagnetic pump for biomedical applications. Sensors and Actuators, A: Physical, 162, 172–176.
  • Hassan, R., Cesmeci, S., Baniasadi, M., Palacio, A., & Robbins, A. (2022). A magnetorheological duckbill valve micropump for drug delivery applications. Micromachines, 13(5), 723. https://doi.org/10.3390/mi13050723
  • Hatch, A., Kamholz, A. E., Holman, G., Yager, P., & Böhringer, K. F. (2001). A ferrofluidic magnetic micropump. Jmems, 10, 215–221. https://doi.org/10.1109/84.925748
  • Jang, L., Morris, C. J., Sharma, N. R., Bardell, R., & Forster, F. Transport of particle-laden fluids through fixed-valve micropumps. ASME IMECE 1999. Micro-Electro-Mechanical Systems (MEMS) (pp. 503–509). Nov. 14–19, 1999. https://doi.org/10.1115/IMECE1999-0312
  • Jaouen, P., Vandanjon, L., & Quéméneur, F. (1999, May). The shear stress of microalgal cell suspensions (Tetraselmis suecica) in tangential flow filtration systems: The role of pumps. Bioresource Technology, 68(2), 149–154. https://doi.org/10.1016/S0960-8524(98)00144-8
  • Kilani, M., & Abbadi, A., “Method and apparatus for pumping a fluid using magnetic pistons,” GB2477276 British Patent, 03 August, 2011.
  • Kilani, M., Halhouli, A. A., & Büttgenbach, S. (2011). Shear stress analysis in a ferrofluidic magnetic micropump. Journal of Nanoscale and Microscale Thermophysical Engineering, 15(1), 1–15. http://dx.doi.org/10.1080/15567265.2010.502923
  • Kilani, M., Khasawneh, H., Badran, A., & Awidi, A. (2016). Further development on a gentle electromagnetic pump for fluids with stress-sensitive microparticles. Sensors and Actuators, A: Physical, 440-447, 247. http://dx.doi.org/10.1016/j.sna.2016.06.031
  • Kovachev, N., Canals, A., & Escarpa, A. (2010). Fast and selective microfluidic chips for electrochemical antioxidant sensing in complex samples. Analytical Chemistry, 82(7), 2925–2931. https://doi.org/10.1021/ac9029218
  • Laser, D. J., & Santiago, J. G. (2004). A review of micropumps. Journal of Micromechanics and Microengineering, 14(6), R35. https://doi.org/10.1088/0960-1317/14/6/R01
  • Laser, D. J., & Santiago, J. G. (2004). A review of micropumps. Journal of Micromechanics and Microengineering, 14(6), R35. https://doi.org/10.1088/0960-1317/14/6/R01
  • Liu, B., Zhen, Z., Yang, J., & Li, D. (2018). A rotary ferrofluidic vane micropump with C shape baffle. Sensors and Actuators, B: Chemical. https://doi.org/10.1016/j.snb.2018.02.113
  • Ma, H. K., Luo, W. F., & Su, H. C., “Development of one-side actuating liquid cooling diaphragm micropump for a multimedia system,” 2011 International Conference on Multimedia Technology, 2011, pp. 6307–6310, https://doi.org/10.1109/ICMT.2011.6002096
  • Michelson, T., Rudnick, J., Baxter, J., & Rashidi, R. (2019, November). A novel ferrofuid-based valve-less pump. IMECE, 7, 11–14. https://doi.org/10.1115/IMECE2019-10790
  • Millward, H., Bellhouse, B., Nicholson, A. M., Beeton, S., Jenkins, N., & Knowles, C. J. (1994). Mammalian cell damage in a novel membrane bioreactor. Biotechnology and Bioengineering, 43(9), 899–906. https://doi.org/10.1002/bit.260430909
  • Patiño-Jaramillo, G. A., Iglesias, I., & Vera, M. (2022). Laminar flow and pressure loss in planar tee joints: Pressure loss coefficients. European Journal of Mechanics-B/Fluids, 94, 263–275. https://doi.org/10.1016/j.euromechflu.2022.03.004
  • Pramod, K., & Sen, A. K. (2014, June 5). Flow and heat transfer analysis of an electro-osmotic flow micropump for chip cooling. Journal of Electronic Packaging. Packag. September 2014; 136(3), 031012. https://doi.org/10.1115/1.4027657
  • Shaker, S., Khan, A., & Kilani, M., “Effect of inlet angle and outlet angle on the performance of double-piston synchronous pumps” IEEE 2020 ASET Conferences. Dubai. UAE, pp. 1–4, 2020
  • Takeuchi, K., Takama, N., Sharma, K., Paul, O., Ruther, P., Suga, T., & Kim, B. (2022). Microfluidic chip connected to porous microneedle array for continuous ISF sampling. Drug Delivery and Translational Research, 12(2), 435–443. https://doi.org/10.1007/s13346-021-01050-0
  • Terjesen, B. F., Gorle, J., & Summerfelt, S. T. (2019). Hydrodynamics of Atlantic salmon culture tank: Effect of inlet nozzle angle on the velocity field. Computers and Electronics in Agriculture, 158:109–121. February 2019. https://doi.org/10.1016/j.compag.2019.01.049.
  • Tsui, Y. Y., & Lu, S. L. (2008). Evaluation of the performance of a valveless micropump by CFD and lumped-system analyses. Sensors and Actuators, A: Physical, 148, 138–148. https://doi.org/10.1016/j.sna.2008.06.036
  • Vante, A. B., & Kanish, T. C. (2022). Experimental investigation on digital offset switching strategy for precise dosing using digital multiple micropump infusion system. Microfluidics and Nanofluidics, 26(12), 1–19. https://doi.org/10.1007/s10404-022-02591-7
  • Verma, A., & Bhattacharyya, S. (2021). Microfluidics-the state-of-the-art technology for pharmaceutical application. Advanced Pharmaceutical Bulletin, 12(4), 700–711. https://doi.org/10.34172/apb.2022.073
  • Wang, Y. N., & Fu, L. M. (2018). Micropumps and biomedical applications–A review. Microelectronic Engineering, 195, 121–138. https://doi.org/10.1016/j.mee.2018.04.008
  • White, F. M. (2009). Fluid mechanics (7th) ed. McGraw-Hill.
  • Xianjin, X., Longhui, W., & Xiaojun, Y. (2016). Magnetic driving method of inspection robot for HVDC transmission lines. Journal of Zhejiang University (Engineering Science), 50(10), 1938–1944. http://www.zjujournals.com/eng/Y2016/V50/I10/1937