1,308
Views
2
CrossRef citations to date
0
Altmetric
BIOMEDICAL ENGINEERING

Airflow patterns and particle deposition in a pediatric nasal upper airway following a rapid maxillary expansion: Computational fluid dynamics study

, , , &
Article: 2158614 | Received 08 Sep 2022, Accepted 11 Dec 2022, Published online: 19 Dec 2022

References

  • Abouali, O., Keshavarzian, E., Farhadi Ghalati, P., Faramarzi, A., Ahmadi, G., & Bagheri, M. H. (2012). Micro and nanoparticle deposition in human nasal passage pre and post virtual maxillary sinus endoscopic surgery. Respiratory Physiology & Neurobiology, 181(3), 335–21. https://doi.org/10.1016/j.resp.2012.03.002
  • Bahmanzadeh, H., Abouali, O., Faramarzi, M., & Ahmadi, G. (2015). Numerical simulation of airflow and micro-particle deposition in human nasal airway pre- and post-virtual sphenoidotomy surgery. Computers in Biology and Medicine, 61, 8–18. https://doi.org/10.1016/j.compbiomed.2015.03.015
  • Bailie, N., Hanna, B., Watterson, J., & Gallagher, G. (2006). An overview of numerical modelling of nasal airflow. Rhinology, 44(1), 53–57.
  • Bass, K., Boc, S., Hindle, M., Dodson, K., & Longest, W. (2019). High-efficiency nose-to-lung aerosol delivery in an infant: Development of a validated computational fluid dynamics method. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 32(3), 132–148. https://doi.org/10.1089/jamp.2018.1490
  • Bhatt, A., Priyadarshini, S., Acharath Mohanakrishnan, A., Abri, A., Sattler, M., & Techapaphawit, S. (2019). Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Studies in Construction Materials, 11, e00263. https://doi.org/10.1016/j.cscm.2019.e00263
  • Brüning, J., Hildebrandt, T., Heppt, W., Schmidt, N., Lamecker, H., Szengel, A., Amiridze, N., Ramm, H., Bindernagel, M., Zachow, S., & Goubergrits, L. (2020). Characterization of the airflow within an average geometry of the healthy human Nasal Cavity. Scientific Reports, 10(1), 3755. https://doi.org/10.1038/s41598-020-60755-3
  • Büyükçavuş, M. H. (2019). Alternate Rapid Maxillary Expansion and Constriction (Alt-RAMEC) protocol: A comprehensive literature review. Turkish Journal of Orthodontics, 32(1), 47–51. https://doi.org/10.5152/TurkJOrthod.2019.18021
  • Cal, I. R., Cercos-Pita, J. L., & Duque, D. (2017). The incompressibility assumption in computational simulations of nasal airflow. Computer Methods in Biomechanics and Biomedical Engineering, 20(8), 853–868. https://doi.org/10.1080/10255842.2017.1307343
  • Celikoglu, M., & Buyukcavus, M. H. (2017). Changes in pharyngeal airway dimensions and hyoid bone position after maxillary protraction with different alternate rapid maxillary expansion and construction protocols: A prospective clinical study. The Angle Orthodontist, 87(4), 519–525. https://doi.org/10.2319/082316-632.1
  • Cheng, Y. S. (2003). Aerosol deposition in the extrathoracic region. Aerosol Science and Technology, 37(8), 659–671. https://doi.org/10.1080/02786820300906
  • Chen, S., Wang, J., Xi, X., Zhao, Y., Liu, H., & Liu, D. (2022). Rapid maxillary expansion has a beneficial effect on the ventilation in children with nasal septal deviation: A computational fluid dynamics study. Frontiers in Pediatrics, Internet].[accessed, https://doi.org/10.3389/fped.2021.718735
  • Das, P., Nof, E., Amirav, I., Kassinos, S. C., Sznitman, J., & Gurka, R. (2018). Targeting inhaled aerosol delivery to upper airways in children: Insight from computational fluid dynamics (CFD).Gurka R, editor. PLoS ONE, 13(11), e0207711. https://doi.org/10.1371/journal.pone.0207711
  • Dastan, A., Abouali, O., & Ahmadi, G. (2014). CFD simulation of total and regional fiber deposition in human nasal cavities. Journal of Aerosol Science, 69, 132–149. https://doi.org/10.1016/j.jaerosci.2013.12.008
  • Dong, J., Ma, J., Shang, Y., Inthavong, K., Qiu, D., Tu, J., & Frank-Ito, D. (2018). Detailed nanoparticle exposure analysis among human nasal cavities with distinct vestibule phenotypes. Journal of Aerosol Science, 121, 54–65. https://doi.org/10.1016/j.jaerosci.2018.05.001
  • Dong, J., Shang, Y., Inthavong, K., Chan, H.-K., & Tu, J. (2018). Partitioning of dispersed nanoparticles in a realistic nasal passage for targeted drug delivery. International Journal of Pharmaceutics, 543(1–2), 83–95. https://doi.org/10.1016/j.ijpharm.2018.03.046
  • Doorly, D. J., Taylor, D. J., & Schroter, R. C. (2008). Mechanics of airflow in the human nasal airways. Respiratory Physiology, 11. https://doi.org/10.1016/j.resp.2008.07.027
  • Elad, D., Liebenthal, R., Wenig, B. L., & Einav, S. (1993). Analysis of air flow patterns in the human nose. Medical & Biological Engineering & Computing, 31(6), 585–592. https://doi.org/10.1007/BF02441806
  • Garcia, G. J. M., Bailie, N., Martins, D. A., & Kimbell, J. S. (2007). Atrophic rhinitis: A CFD study of air conditioning in the nasal cavity. Journal of Applied Physiology, 103(3), 1082–1092. https://doi.org/10.1152/japplphysiol.01118.2006
  • Ghoneima, A., AlBarakati, S., Jiang, F., Kula, K., & Wasfy, T. (2015). Computational fluid dynamics analysis of the upper airway after rapid maxillary expansion: A case report. Progress in Orthodontics, 16(1), 10. https://doi.org/10.1186/s40510-015-0085-x
  • Guha, A. (2008). Transport and deposition of particles in turbulent and laminar flow. Annual Review of Fluid Mechanics, 40(1), 311–341. https://doi.org/10.1146/annurev.fluid.40.111406.102220
  • Hagemeyer, A. N., Sears, C. G., & Zierold, K. M. (2019). Respiratory health in adults residing near a coal-burning power plant with coal ash storage facilities: A cross-sectional epidemiological study. International Journal of Environmental Research and Public Health, 16(19), 3642. https://doi.org/10.3390/ijerph16193642
  • Hahn, I., Scherer, P. W., & Mozell, M. M. (1993). Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. Journal of Applied Physiology, 75(5), 2273–2287. https://doi.org/10.1152/jappl.1993.75.5.2273
  • Havakeshian, G., Koretsi, V., Eliades, T., & Papageorgiou, S. N. (2020). Effect of orthopedic treatment for class iii malocclusion on upper airways: A systematic review and meta-analysis. Journal of Clinical Medicine, 9(9), E3015. https://doi.org/10.3390/jcm9093015
  • Hazeri, M., Faramarzi, M., Sadrizadeh, S., Ahmadi, G., & Abouali, O. (2021). Regional deposition of the allergens and micro-aerosols in the healthy human nasal airways. Journal of Aerosol Science, 152, 105700. https://doi.org/10.1016/j.jaerosci.2020.105700
  • Hiyama, S., Suda, N., Ishii-Suzuki, M., Tsuiki, S., Ogawa, M., Suzuki, S., & Kuroda, T. (2002). Effects of maxillary protraction on craniofacial structures and upper-airway dimension. The Angle Orthodontist, 72(1), 43–47. https://doi.org/10.1043/0003-3219(2002)072<0043:EOMPOC>2.0.CO;2.
  • Inthavong, K., Chetty, A., Shang, Y., & Tu, J. (2018). Examining mesh Independence for flow dynamics in the human nasal cavity. Computers in Biology and Medicine, 102, 40–50. https://doi.org/10.1016/j.compbiomed.2018.09.010
  • Islam, M. S., Larpruenrudee, P., Hossain, S. I., Rahimi-Gorji, M., Gu, Y., Saha, S. C., & Paul, G. (2021). Polydisperse aerosol transport and deposition in upper airways of age-specific lung. International Journal of Environmental Research and Public Health, 18(12), 6239. https://doi.org/10.3390/ijerph18126239
  • Iwasaki, T., Saitoh, I., Takemoto, Y., Inada, E., Kanomi, R., Hayasaki, H., & Yamasaki, Y. (2012). Improvement of nasal airway ventilation after rapid maxillary expansion evaluated with computational fluid dynamics. American Journal of Orthodontics and Dentofacial Orthopedics, 141(3), 269–278. https://doi.org/10.1016/j.ajodo.2011.08.025
  • Iwasaki, T., Takemoto, Y., Inada, E., Sato, H., Suga, H., Saitoh, I., Kakuno, E., Kanomi, R., & Yamasaki, Y. (2014). The effect of rapid maxillary expansion on pharyngeal airway pressure during inspiration evaluated using computational fluid dynamics. International Journal of Pediatric Otorhinolaryngology, 78(8), 1258–1264. https://doi.org/10.1016/j.ijporl.2014.05.004
  • Karakosta, P., Alexopoulos, A. H., & Kiparissides, C. (2015). Computational model of particle deposition in the nasal cavity under steady and dynamic flow. Computer Methods in Biomechanics and Biomedical Engineering, 18(5), 514–526. https://doi.org/10.1080/10255842.2013.819856
  • Kaygisiz, E., Tuncer, B. B., Yüksel, S., Tuncer, C., & Yildiz, C. (2009). Effects of maxillary protraction and fixed appliance therapy on the pharyngeal airway. The Angle Orthodontist, 79(4), 660–667. https://doi.org/10.2319/072408-391.1
  • Kelly, J. T., Prasad, A. K., & Wexler, A. S. (2000). Detailed flow patterns in the nasal cavity. Journal of Applied Physiology, 89(1), 323–337. https://doi.org/10.1152/jappl.2000.89.1.323
  • Keyhani, K., Scherer, P. W., & Mozell, M. M. (1995). Numerical simulation of airflow in the human nasal cavity. Journal of Biomechanical Engineering, 117(4), 429–441. https://doi.org/10.1115/1.2794204
  • Kiasadegh, M., Emdad, H., Ahmadi, G., & Abouali, O. (2020). Transient numerical simulation of airflow and fibrous particles in a human upper airway model. Journal of Aerosol Science, 140, 105480. https://doi.org/10.1016/j.jaerosci.2019.105480
  • Kleinstreuer, C., & Zhang, Z. (2003). Laminar-to-turbulent fluid-particle flows in a human airway model. International Journal of Multiphase Flow, 29(2), 271–289. https://doi.org/10.1016/S0301-9322(02)00131-3
  • Liou, E. J.-W., & Tsai, W.-C. (2005). A new protocol for maxillary protraction in cleft patients: Repetitive weekly protocol of alternate rapid maxillary expansions and constrictions. The Cleft Palate-Craniofacial Journal, 42(2), 121–127. https://doi.org/10.1597/03-107.1
  • Maspero, C., Farronato, M., Bellincioni, F., Annibale, A., Machetti, J., Abate, A., & Cavagnetto, D. (2020). Three-dimensional evaluation of maxillary sinus changes in growing subjects: A retrospective cross-sectional study. Materials (Basel), 13(4), 1007. https://doi.org/10.3390/ma13041007
  • Ming, Y., Hu, Y., Li, Y., Yu, J., He, H., & Zheng, L. (2018). Effects of maxillary protraction appliances on airway dimensions in growing class III maxillary retrognathic patients: A systematic review and meta-analysis. International Journal of Pediatric Otorhinolaryngology, 105, 138–145. https://doi.org/10.1016/j.ijporl.2017.12.013
  • Morsi, S. A., & Alexander, A. J. (1972). An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, 55(2), 193. https://doi.org/10.1017/S0022112072001806
  • Sarkar, A., Rano, R., Mishra, K. K., & Sinha, I. N. (2005). Particle size distribution profile of some Indian fly ash—a comparative study to assess their possible uses. Fuel Processing Technology, 86(11), 1221–1238. https://doi.org/10.1016/j.fuproc.2004.12.002
  • Schroeter, J. D., Garcia, G. J. M., & Kimbell, J. S. (2011). Effects of surface smoothness on inertial particle deposition in human Nasal Models. Journal of Aerosol Science, 42(1), 52–63. https://doi.org/10.1016/j.jaerosci.2010.11.002
  • Segal, R. A., Kepler, G. M., & Kimbell, J. S. (2008). Effects of differences in nasal anatomy on airflow distribution: A comparison of four individuals at rest. Annals of Biomedical Engineering, 36(11), 1870–1882. https://doi.org/10.1007/s10439-008-9556-2
  • Tuncer, B. B., Kaygisiz, E., Tuncer, C., & Yüksel, S. (2009). Pharyngeal airway dimensions after chin cup treatment in Class III malocclusion subjects. Journal of Oral Rehabilitation, 36(2), 110–117. https://doi.org/10.1111/j.1365-2842.2008.01910.x
  • Wen, J., Inthavong, K., Tu, J., & Wang, S. (2008). Numerical simulations for detailed airflow dynamics in a human nasal cavity. Respiratory Physiology & Neurobiology, 161(2), 125–135. https://doi.org/10.1016/j.resp.2008.01.012
  • Xi, J., Berlinski, A., Zhou, Y., Greenberg, B., & Ou, X. (2012). Breathing resistance and ultrafine particle deposition in Nasal–Laryngeal airways of a Newborn, an infant, a child, and an adult. Annals of Biomedical Engineering, 40(12), 2579–2595. https://doi.org/10.1007/s10439-012-0603-7
  • Yilmaz, B. S., & Kucukkeles, N. (2014). Skeletal, soft tissue, and airway changes following the alternate maxillary expansions and constrictions protocol. The Angle Orthodontist, 84(5), 868–877. https://doi.org/10.2319/092713-705.1
  • Zamankhan, P., Ahmadi, G., Wang, Z., Hopke, P. K., Cheng, Y.-S., Su, W. C., & Leonard, D. (2006). Airflow and deposition of nano-particles in a human Nasal Cavity. Aerosol Science and Technology, 40(6), 463–476. https://doi.org/10.1080/02786820600660903
  • Zhang, Z., Kleinstreuer, C., Donohue, J. F., & Kim, C. S. (2005). Comparison of micro- and nano-size particle depositions in a human upper airway model. Journal of Aerosol Science, 36(2), 211–233. https://doi.org/10.1016/j.jaerosci.2004.08.006
  • Zhang, Y., Shang, Y., Inthavong, K., Tong, Z., Sun, B., Zhu, K., Yu, A., & Zheng, G. (2019). Computational investigation of dust mite allergens in a realistic human nasal cavity. Inhalation Toxicology, 31(6), 224–235. https://doi.org/10.1080/08958378.2019.1647315
  • Zhao, Y. A., & Shusterman, D. (2012). Occupational rhinitis and other work-related upper respiratory tract conditions. Clinics in Chest Medicine, 33(4), 637–647. https://doi.org/10.1016/j.ccm.2012.09.004
  • Zhou, Y., Xi, J., Simpson, J., Irshad, H., & Cheng, Y.-S. (2013). Aerosol deposition in a Nasopharyngolaryngeal Replica of a 5-year-old child. Aerosol Science and Technology, 47(3), 275–282. https://doi.org/10.1080/02786826.2012.749341
  • Zierold, K. M., & Odoh, C. (2020). A review on fly ash from coal-fired power plants: Chemical composition, regulations, and health evidence. Reviews on Environmental Health, 35(4), 401–418. https://doi.org/10.1515/reveh-2019-0039
  • Zubair, M. (2012). Review A critical overview of limitations of CFD modeling in Nasal airflow. Journal of Medical and Biological Engineering, 32(2), 77. https://doi.org/10.5405/jmbe.948
  • Zubair, M., Abdullah, M. Z., & Ahmad, K. A. (2013). Hybrid Mesh for Nasal airflow studies. Computational and Mathematical Methods in Medicine, 2013, 1–7. https://doi.org/10.1155/2013/727362
  • Zubair, M., Riazuddin, V. N., Abdullah, M. Z., Ismail, R., Shuaib, I. L., Hamid, S. A., & Ahmad, K. A. (2010). Airflow inside the nasal cavity: Visualization using computational fluid dynamics. Asian Biomedicine, 4(4), 657–661. https://doi.org/10.2478/abm-2010-0085
  • Zubair, M., Riazuddin, V. N., Abdullah, M. Z., Rushdan, I., Shuaib, I. L., & Ahmad, K. A. (2013). COMPUTATIONAL FLUID DYNAMICS STUDY OF PULL AND PLUG FLOW BOUNDARY CONDITION ON NASAL AIRFLOW. Biomedical Engineering: Applications, Basis and Communications, 25(4), 1350044. https://doi.org/10.4015/S1016237213500440
  • Zuber, M., Valerian Corda, J., Ahmadi, M., Satish Shenoy, B., Anjum Badruddin, I., E. Anqi, A., Arifin Ahmad, K. M., Abdul Khader, S., Lewis, L., Anas Khan, M., & Kamangar, S. (2020). Investigation of coronavirus deposition in realistic human Nasal Cavity and impact of social distancing to contain COVID-19: A computational fluid dynamic approach. Computer Modeling in Engineering & Sciences, 125(3), 1185–1199. https://doi.org/10.32604/cmes.2020.015015