1,047
Views
5
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Experimental thermophysical dependent mechanical analysis of earth bricks with Canarium schweinfurthii and Cocos nucifera bio-aggregates - A case study in Cameroon

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2159159 | Received 02 Jul 2021, Accepted 12 Dec 2022, Published online: 13 Feb 2023

References

  • Abbaszadeh Shahri, A., Larsson, S., & Johansson, F. (2016). Updated relations for the uniaxial compressive strength of marlstones based on P-wave velocity and point load index test. Innovative Infrastructure Solutions, 1(1), 1–30.
  • Abessolo, D., Biwole, A. B., & Fokwa, D. (2020). Effets de la longueur et de la teneur des fibres de bambou sur les propriétés physicomécaniques et hygroscopiques des blocs de terre comprimée utilisés dans la construction. Afrique Science, 16(3), 161–171. http://www.afriquescience.net/PDF/16/4/2.pdf
  • Adam, E. A., & Agib, A. R. A. (2017). Compressed stabilised earth block manufacture in Sudan. UNESCO.
  • Afan, H. A., El-Shafie, A., Yaseen, Z. M., Hameed, M. M., Wan Mohtar, W. H. M., & Hussain, A. (2014). ANN based sediment prediction model utilizing different input scenarios. Water Resources Management, 2014 29:4. 29(4), 1231–1245. https://doi.org/10.1007/s11269-014-0870-1.
  • Ahn, Y. H., Pearce, A. R., Wang, Y., & Wang, G. (2013). Drivers and barriers of sustainable design and construction: The perception of green building experience. International Journal of Sustainable Building Technology and Urban Development, 4(1), 35–45. https://doi.org/10.1080/2093761X.2012.759887
  • Akadiri, O. P. (2011). Development of a multi-criteria approach for the selection of sustainable materials for building projects. university of Wolverhampton.
  • Akadiri, O. P., & Olomolaiye, P. O. (2012). Development of sustainable assessment criteria for building materials selection. Engineering, Construction and Architectural Management, 19(6), 666–687. https://doi.org/10.1108/09699981211277568
  • Algin, H. M., & Turgut, P. (2008). Cotton and limestone powder wastes as brick material. Construction and Building Materials, 22(6), 1074–1080. https://doi.org/10.1016/j.conbuildmat.2007.03.006
  • Al Rim, K., Ledhem, A., Douzane, O., Dheilly, R. M., & Queneudec, M. (1999). Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites. Cement and Concrete Composites, 21(4), 269–276. https://doi.org/10.1016/S0958-9465(99)00008-6
  • Asheghi, R., Abbaszadeh Shahri, A., & Khorsand Zak, M. (2019). Prediction of Uniaxial Compressive Strength of Different Quarried Rocks Using Metaheuristic Algorithm. Arabian Journal for Science and Engineering, 44(10), 8645–8659.
  • Asheghi, R., Hosseini, S. A., Saneie, M., & Shahri, A. A. (2020). Updating the neural network sediment load models using different sensitivity analysis methods: A regional application. Journal of Hydroinformatics, 22(3), 562–577. https://doi.org/10.2166/hydro.2020.098
  • ASTM E2392M-10. (2016). Standard guide for design of earthen wall building systems. ASTM, 04(12), 1–10. https://doi.org/10.1520/E2392_E2392M-10R16
  • Ben Chaabene, W., Flah, M., & Nehdi, M. L. (2020). Machine learning prediction of mechanical properties of concrete: Critical review. Construction and Building Materials, 260, 119889.
  • Bruno, A. W., Gallipoli, D., Perlot-Bascoules, C., Mendes, J., & Salmon, N. (2015). Briques de terre crue : Procédure de compactage haute pression et influence sur les propriétés mécaniques. 33èmes Rencontres de l’AUGC, ISABTP/UPP, Anglet, 1–9. https://hal.archives-ouvertes.fr/hal-01167676
  • Bunz, K. R., Henze, G. P., & Tiller, D. K. (2006). Survey of sustainable building design practices in North America, Europe, and Asia. Journal of Architectural Engineering, 12(1), 33–62. https://doi.org/10.1061/(ASCE)1076-0431(2006)12:1(33)
  • Campo, E. A. (2008). Thermal properties of polymeric materials. In W. Andrew (Ed.), Selection of Polymeric Materials (pp. 103–140). Elsevier.
  • Cassagnabère, F., Lachemi, M., Mouret, M., & Escadeillas, G. (2011). Caractérisation performantielle d’un liant ternaire à base de ciment, laitier et métakaolin. Canadian Journal of Civil Engineering, 38(8), 837–848. https://doi.org/10.1139/l11-043
  • Chithra, S., Kumar, S. R. R. S., Chinnaraju, K., & Alfin Ashmita, F. (2016). A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks. Construction and Building Materials, 114, 528–535.
  • Chou, J.-S., Chiu, C.-K., Farfoura, M., & Al-Taharwa, I. (2010). Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques. Journal of Computing in Civil Engineering, 25(3), 242–253. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000088
  • Cid-Falceto, J., Mazarrón, F. R., & Cañas, I. (2012). Assessment of compressed earth blocks made in Spain: International durability tests. Construction and Building Materials, 37, 738–745. https://doi.org/10.1016/j.conbuildmat.2012.08.019
  • CIRAD., 2006. Annual report CIRAD 2006: Growing crops in town a response to urbanization.
  • CRAterre, Houben, H., & Guillaud, H. (2006). Traité de construction en terre (3rd) ed.). Éd. Parenthèses.
  • D1632 - 07. (2007). Standard practice for making and curing soil-cement compression and flexure test specimens in the laboratory (Withdrawn 2016). ASTM International, 1–15. https://doi.org/10.1520/D1632-07
  • D5334 - 00. (2000). Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure. ASTM International.
  • Ferentinou, M., & Fakir, M. (2017). An ANN approach for the prediction of uniaxial compressive strength of some sedimentary and igneous rocks in eastern KwaZulu-Natal. Proc Eng, 191, 1117–1125.
  • Fontaine, L., & Anger, R. (2010). Bâtir en terre, du grain de sable à l’architecture. Belin/Cité des sciences et de l’industrie.
  • Gallipoli, D., Bruno, A. W., Perlot, C., & Mendes, J. (2017). A geotechnical perspective of raw earth building. Acta Geotechnica, 12(3), 463–478. https://doi.org/10.1007/s11440-016-0521-1
  • Ganou Koungang, B. M., Ndapeu, D., Tchemou, G., Messan, A., Njeugna, E., & Courard, L. (2020). Challenge to enhance the value of the Cameroonian coastal earth : Physical tests and mechanical characterization of earth material. SN Applied Sciences, 2(July), 11. https://doi.org/10.1007/s42452-020-3141-1
  • Ganou Koungang, B. M., Ndapeu, D., Tchemou, G., Njeugna, E., & Courard, L. (2019a). Formulation des briques de terre biosourcées a charges de granulats de Canarium schweinfurthii et Cocos nucifera. In M. A. Etoh & G. Tchiete (Eds.), 4ème Conférence scientifique des Doctorants et Jeunes chercheurs des Universités d’Etat/ Instituts privés l’Enseignement supérieur au Cameroun de Douala (pp. 15). Université de Douala.
  • Ganou Koungang, B. M., Ndapeu, D., Tchemou, G., Njeugna, E., & Courard, L. (2019b). Comportement hydromécanique des BTC avec granulats de Canarium schweinfurthii et Cocos nucifera: Analyse de durabilité. In Colloque international des 4Oaires de l’Enset de Douala (Enset). Raiffet:. 10.
  • Ganou Koungang, B. M., Ndapeu, D., Tchuindjang, J. T., Wenga Ntcheping, B., Tchemou, G., Bistac, S., Njeugna, E., & Courard, L. (2020). Influence of temperature on the creep behaviour by macroindentation of Cocos nucifera shells and Canarium schweinfurthii cores (bio-shellnut wastes in Cameroon). Materials Research Express, 7(10), 1–14. https://doi.org/10.1088/2053-1591/abbebb
  • Giroudon, M., Laborel-Préneron, A., Aubert, J. E., & Magniont, C. (2019). Comparison of barley and lavender straws as bioaggregates in earth bricks. Construction and Building Materials, 202, 254–265. https://doi.org/10.1016/j.conbuildmat.2018.12.126
  • Guettala, S., Bachar, M., & Azzouz, L. (2016). Properties of the compressed-stabilized earth brick containing Cork granules. Journal of Earth Science and Climatic Change, 7(5). https://doi.org/10.4172/2157-7617.1000353
  • Guillaud, H., Joffroy, T., Odul, P., & CRATerre-EAG, (1995). Compressed earth blocks- manual of design and construction: Volume II (2nd) Eschborn: Deutsches Zentrum für Entwicklungstechnologien - GATE in: Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH in coordination with BASIN. https://craterre.hypotheses.org/1457
  • Häkkinen, T., & Belloni, K. (2011). Barriers and drivers for sustainable building. Building Research & Information, 39(3), 239–255. https://doi.org/10.1080/09613218.2011.561948
  • Houben, H., Boubekeur, P., Doat, S., D’Ornano, A., Douline, P., Garnier, H., Guillaud, T., Joffroy, & Rigassi, V. (1998). Compressed Earth Blocks: Standards. CDI & CRAterre.
  • Izemmourena, O., & Guettala, A. (2014). Amélioration de la durabilité des BTC à base d’un sol de la région de Biskra. MATEC Web of Confrences, 11, 1–5. https://www.matec-conferences.org/articles/matecconf/pdf/2014/02/matecconf_cmss2013_02001.pdf
  • Izemmouren, O., Guettala, A., & Guettala, A. (2015). Mechanical properties and durability of lime and natural pozzolana stabilized steam-cured compressed earth block bricks. Geotechnical and Geological Engineering, 33(5), 1321–1333. https://doi.org/10.1007/s10706-015-9904-6
  • Kahraman, S. (2001). Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci, 38(7), 981–994.
  • Kolawole, F. O., Olugbemi, O. M., Kolawole, S. K., Owa, A. F., & Ajayi, E. S. (2017). Fracture toughness and strength of bamboo-fiber reinforced laterite as building block material. Universal Journal of Materials Science, 5(3), 64–72. https://doi.org/10.13189/ujms.2017.050302
  • Laborel-Préneron, A., Aubert, J. E., Magniont, C., Tribout, C., & Bertron, A. (2016). Plant aggregates and fibers in earth construction materials: A review. Construction and Building Materials, 111, 719–734. https://doi.org/10.1016/j.conbuildmat.2016.02.119
  • Le Roux, A. (1969). Contribution à l’étude du traitement à la chaux des matériaux argileux. Université des Sciences d’Orsay.
  • Mahamat, A. A., Boukar, M. M., Ibrahim, N. M., Stanislas, T. T., Linda Bih, N., Obianyo, I. I., & Savastano, H. (2021). Machine learning approaches for prediction of the compressive strength of alkali activated termite mound soil. Applied Sciences (Switzerland), 11(11), 1–13. https://doi.org/10.3390/app11114754
  • Masuka, S., Gwenzi, W., & Rukuni, T. (2018, January). Development, engineering properties and potential applications of unfired earth bricks reinforced by coal fly ash, lime and wood aggregates. Journal of Building Engineering, 18, 312–320. https://doi.org/10.1016/j.jobe.2018.03.010
  • Meukam, P., 2004. Valorisation des briques de terre stabilisées en vue de l’isolation thermique des bâtiments. Thèse en co-tutelle entre l’Université de Cergy-Pontoise et l’Université de Yaoundé I. https://www.theses.fr/2004CERG0287
  • Molina, B. E. S. (2016). Raw-earth housing in Antioquia, Colombia. Eco-Architecture VI: Harmonisation between Architecture and Nature, 161, 181. https://www.witpress.com/books/978-1-78466-111-3
  • Mostafa, M. (2016). Sustainable construction with Green Compressed Earth Block (GCEB). The University of Alabama at Birmingham.
  • Mostafa, M., & Uddin, N. (2016). Experimental analysis of Compressed Earth Block (CEB) with banana fibers resisting flexural and compression forces. Case Studies in Construction Materials, 5, 53–63. https://doi.org/10.1016/j.cscm.2016.07.001
  • Moussa, H. S., Nshimiyimana, P., Hema, C., Zoungrana, O., Messan, A., & Courard, L. (2019). Comparative study of thermal comfort induced from Masonry made of stabilized compressed earth block vs conventional cementitious material. Journal of Minerals and Materials Characterization and Engineering, 07(6), 385–403. https://doi.org/10.4236/jmmce.2019.76026
  • Muntohar, A. S. (2011). Engineering characteristics of the compressed-stabilized earth brick. Construction and Building Materials, 25(11), 4215–4220. https://doi.org/10.1016/j.conbuildmat.2011.04.061
  • Mvondo Ngono, R. R., Meukam, P., Jeong, J., Meneses, D. D. S., & Nkeng, E. G. (2017). Influence of water content on the mechanical and chemical properties of tropical wood species. Results in Physics, 7, 2096–2103. https://doi.org/10.1016/j.rinp.2017.06.025
  • Nagaraj, H. B., Sravan, M. V., Arun, T. G., & Jagadish, K. S. (2014). Role of lime with cement in long-term strength of Compressed Stabilized Earth Blocks. International Journal of Sustainable Built Environment, 3(1), 54–61. https://doi.org/10.1016/j.ijsbe.2014.03.001
  • NF EN 1097-6. (2014). Essais pour déterminer les caractéristiques mécaniques et physiques des granulats - Partie 6 : Détermination de la masse volumique réelle et du coefficient d’absorption d’eau. Afnor. https://www.boutique.afnor.org/fr-fr/norme/nf-en-10976/essais-pour-determiner-les-caracteristiques-mecaniques-et-physiques-des-gra/fa192181/321395
  • NF EN 196-1. (2016). Méthodes d’essais des ciments - Partie 1 : Détermination des résistances. AFNOR, 1–22. https://www.boutique.afnor.org/fr-fr/norme/nf-en-1961/methodes-dessais-des-ciments-partie-1-determination-des-resistances/fa184622/57803
  • NF P18-574. (1990). Granulats - Essai de fragmentation dynamique. AFNOR. https://www.boutique.afnor.org/fr-fr/norme/p18574/granulats-essai-de-fragmentation-dynamique/fa021246/56257
  • NF P94-050. (1995). Sols : Reconnaissance et essais - Détermination de la teneur en eau pondérale des matériaux - Méthode par étuvage. AFNOR, 1–7. https://www.boutique.afnor.org/fr-fr/norme/nf-p94050/sols-reconnaissance-et-essais-determination-de-la-teneur-en-eau-ponderale-d/fa038799/11081
  • NF P94-093. (2014). Sols : Reconnaissance et essais - Détermination des références de compactage d’un matériau - Essai Proctor Normal - Essai Proctor modifié. AFNOR, 1–22. https://www.boutique.afnor.org/fr-fr/norme/nf-p94093/sols-reconnaissance-et-essais-determination-des-references-de-compactage-du/fa185491/43924#:~:text=Norme%20Annul%C3%A9e-,Sols%20%3A%20reconnaissance%20et%20essais%20%2D%20D%C3%A9termination%20des%20r%C3%A9f%C3%A9rences%20de%20compactage%20d,normal%20et%20optimum%20Proctor%20modifi%C3%A9
  • NF X15-119. (1999). Mesure de l’humidité de l’air - Générateurs d’air humide à solutions salines pour l’étalonnage des hygromètres. AFNOR. https://www.boutique.afnor.org/fr-fr/norme/nf-x15119/mesure-de-lhumidite-de-lair-generateurs-dair-humide-a-solutions-salines-pou/fa017368/16406
  • Ngohe-Ekam, P. S., Meukam, P., Menguy, G., & Girard, P. (2006). Thermophysical characterisation of tropical wood used as building materials : With respect to the basal density Thermophysical characterisation of tropical wood used as building materials : With respect to the basal density. Construction and Building Materials, 20(9), 929–938. https://doi.org/10.1016/j.conbuildmat.2005.06.017
  • Nitcheu, M., Meukam, P., Damfeu, J. C., & Njomo, D. (2018). Thermomechanical characterisation of compressed clay bricks reinforced by thatch fibres for the optimal use in building. Materials Sciences and Applications, 9(12), 913–935. https://doi.org/10.4236/msa.2019.912066
  • Noumowé, A., Siddique, R., & Ranc, G. (2009). Thermo-mechanical characteristics of concrete at elevated temperatures up to 310 °C. Nuclear Engineering and Design, 239(3), 470–476. https://doi.org/10.1016/j.nucengdes.2008.11.020
  • Nshimiyimana, P. (2020). Effect of the type clay earthen materials and distribution materials on the physico-mechanical properties and durability of compressed earth blocks. University of Liege and Institut 2iE.
  • Nshimiyimana, P., Messan, A., & Courard, L. (2020). Physico-mechanical and hygro-thermal properties of compressed earth blocks stabilized with industrial and agro by-product binders. Materials, 13(17), 1–17. https://doi.org/10.3390/ma13173769
  • Nshimiyimana, P., Messan, A., Zhao, Z., & Courard, L. (2019). Chemico-microstructural changes in earthen building materials containing calcium carbide residue and rice husk ash. Construction and Building Materials, 216, 622–631. https://doi.org/10.1016/j.conbuildmat.2019.05.037
  • Nshimiyimana, P., Miraucourt, D., Messan, A., & Courard, L. (2018). Calcium Carbide Residue and Rice Husk Ash for improving the Compressive Strength of Compressed Earth Blocks. MRS Advances, 3(34–35), 2009–2014. https://doi.org/10.1557/adv.2018.147
  • Obianyo, I. I., Mahamat, A. A., Anosike-Francis, E. N., Stanislas, T. T., Geng, Y., Onyelowe, K. C., Odusanya, S., Onwualu, A. P., & Soboyejo, A. B. O. (2021). Performance of lateritic soil stabilized with combination of bone and palm bunch ash for sustainable building applications. Cogent Engineering, 8(1), 1–19. https://doi.org/10.1080/23311916.2021.1921673
  • Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12(9), 2265–2300. https://doi.org/10.1016/j.rser.2007.05.001
  • Pichery, C. (2014). Sensitivity Analysis. Encyclopedia of Toxicology: Third Edition, 236–237. https://hal.ehesp.fr/hal-03708480
  • Reeves, G. M., Sims, I., & Cripps, J. C. (2006). Clay materials used in construction, Engineering geology special publication. Geological Society of London.
  • Saidi, M., Cherif, A. S., Zeghmati, B., & Sediki, E. (2018). Stabilization effects on the thermal conductivity and sorption behavior of earth bricks. Construction and Building Materials, 167, 566–577. https://doi.org/10.1016/j.conbuildmat.2018.02.063
  • Sitton, J. D., Zeinali, Y., & Story, B. A. (2017). Rapid soil classification using artificial neural networks for use in constructing compressed earth blocks. Construction and Building Materials, 138, 214–221.
  • Smith, J. B., Schneider, S. H., Oppenheimer, M., Yohe, G. W., Hare, W., Mastrandrea, M. D., Patwardhan, A., Burton, I., Corfee-Morlot, J., & Magadza, C. H. D., 2009. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC)“reasons for concern”. Proceedings of the national Academy of Sciences, 106 (11), 4133–4137.
  • Sore, S. O., Messan, A., Prud’Homme, E., Escadeillas, G., & Tsobnang, F. (2018). Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso. Construction and Building Materials, 165, 333–345. https://doi.org/10.1016/j.conbuildmat.2018.01.051
  • Stanislas, T. T., Tendo, J. F., Teixeira, R. S., Ojo, E. B., Komadja, G. C., Kadivar, M., & Junior, H. S. (2021). Effect of cellulose pulp fibres on the physical, mechanical, and thermal performance of extruded earth-based materials. Journal of Building Engineering, 39, 102259. https://doi.org/10.1016/j.jobe.2021.102259
  • Taallah, B., & Guettala, A. (2016). The mechanical and physical properties of compressed earth block stabilized with lime and filled with untreated and alkali-treated date palm fibers. Construction and Building Materials, 104, 52–62. https://doi.org/10.1016/j.conbuildmat.2015.12.007
  • Taallah, B., Guettala, A., Guettala, S., & Kriker, A. (2014). Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers. Construction and Building Materials, 59, 161–168. https://doi.org/10.1016/j.conbuildmat.2014.02.058
  • Thakur, M., Sharma, A., Ahlawat, V., Bhattacharya, M., & Goswami, S. (2020). Process optimization for the production of cellulose nanocrystals from rice straw derived α-cellulose. Materials Science for Energy Technologies, 3, 328–334. https://doi.org/10.1016/j.mset.2019.12.005
  • XP P13-901. (2001). Blocs de terre comprimée pour murs et cloisons, Définitions-Spécifications-Méthodes d’essais-Conditions de réception. AFNOR, 1–37. https://www.boutique.afnor.org/fr-fr/norme/xp-p13901/blocs-de-terre-comprimee-pour-murs-et-cloisons-definitions-specifications-m/fa120503/487
  • Yasar, E., & Erdogan, Y. (2004). Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int J Rock Mech Min Sci, 41(5), 871–875.