1,051
Views
0
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Sudden collapse of steel water tower tank due to compound openings in critical zone

ORCID Icon, ORCID Icon &
Article: 2163573 | Received 05 Nov 2022, Accepted 24 Dec 2022, Published online: 11 Jan 2023

References

  • Arora, P., Singh, P. K., Bhasin, V., Vaze, K. K., Ghosh, A. K., Pukazhendhi, D. M., Gandhi, P., & Raghava, G. (2011). Predictions for fatigue crack growth life of cracked pipes and pipe welds using RMS SIF approach and experimental validation. International Journal of Pressure Vessels and Piping, 88(10), 384–17. https://doi.org/10.1016/j.ijpvp.2011.07.003
  • CALLISTER, W. D., Jr. (2000). Materials science and engineering: An introduction.
  • Cerit, M. (2019). Corrosion pit-induced stress concentration in spherical pressure vessel. Thin-Walled Structures, 136, 106–112. https://doi.org/10.1016/j.tws.2018.12.014
  • Faur, N., Galatanu, S. V., & Hluscu, M. (2014). Study of multiple holes influence on theoretical stress concentration coefficient in case of cylindrical vessels. Key Engineering Materials, 601, 129–132. https://doi.org/10.4028/www.scientific.net/KEM.601.129
  • GRIFFITH, A. A. (1920). The phenomenon of rupture and flow in solids. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 221, 163–198. https://doi.org/10.1098/rsta.1921.0006
  • Inglis, C. E. (1913). Stresses in a plate due to the presence of cracks and sharp corners. Transactions of the Royal Institution of Naval Architects Part B: International Journal of Small Craft Technology, 55, 219–241. https://imechanica.org/files/1913%20Inglis%20Stress%20in%20a%20plate%20due%20to%20the%20presence%20of%20cracks%20and%20sharp%20corners_0.pdf
  • Irwin, G. R. (1948). Fracture dynamics, fracturing of metals. American Society of Metals, 296
  • Kashkoli, M. D., Tahan, K. N., & Nejad, M. Z. (2019). Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel. Steel and Composite Structures, 32(6), 701–715. https://doi.org/10.12989/scs.2019.32.6.701
  • Kirsch, C. (1898). Die theorie der elastizitat und die bedurfnisse der festigkeitslehre. Zeitschrift Des Vereines Deutscher Ingenieure, 42, 797–807. https://www.researchgate.net/profile/Manfred-Staat/post/Generalization-of-Kirschs-problem-to-finite-plate/attachment/5e11a949cfe4a777d4011a72/AS%3A843743624171521%401578175564579/download/Kirsch.pdf.
  • Kostinakis, K., & Morfidis, K. (2017). The impact of successive earthquakes on the seismic damage of multistorey 3D R/C buildings. Earthquakes and Structures, 12(1), 1–12. https://doi.org/10.12989/eas.2017.12.1.001
  • Lee, S., Cho, J., Lee, C., & Cho, S. (2021). Experimental and numerical investigations of near-field underwater explosions. Structural Engineering and Mechanics, 77(3), 395–406. https://doi.org/10.12989/sem.2021.77.3.395
  • Li, F., & Chen, X. (2020). POD analysis for modeling wind pressures and wind effects of a cylindrical shell roof. Wind and Structures, 30(6), 559–573. https://doi.org/10.12989/was.2020.30.6.559
  • Li, F. M., Hu, C., & Huang, W. H. (2003). Elastic wave scattering and dynamic stress concentrations in cylindrical shells with a circular cutout. Journal of Sound and Vibration, 259(5), 1209–1223. https://doi.org/10.1006/jsvi.2002.5222
  • Luo, L., Xiang, Y., & Wang, Q. (2012). Stress concentration factor expression for tension strip with eccentric elliptical hole. Applied Mathematics and Mechanics, 33(1), 117–128. https://doi.org/10.1007/s10483-012-1537-7
  • Magnucki, K., Szyc, W., & Lewiński, J. (2002). Minimization of stress concentration factor in cylindrical pressure vessels with ellipsoidal heads. International Journal of Pressure Vessels and Piping, 79(12), 841–846. https://doi.org/10.1016/S0308-0161(02)00101-1
  • Makulsawatudom, P., Mackenzie, D., & Hamilton, R. (2004). Stress concentration at crossholes in thick cylindrical vessels. The Journal of Strain Analysis for Engineering Design, 39(5), 471–481. https://doi.org/10.1243/0309324041896506
  • Rebora, A. U., & Vernassa, G. (2020). Transverse circular holes in cylindrical tubes loaded in traction and in flexion: A new analytical approximation of the stress concentration factor. Materials, 13(6), 1331. https://doi.org/10.3390/ma13061331
  • Srinivasan, G., & Lehnhoff, T. F. (2001). Bolt head fillet stress concentration factors in cylindrical pressure vessels. Journal of Pressure Vessel Technology, 123(3), 381–386. https://doi.org/10.1115/1.1379530
  • Tao, M., Zhao, R., Du, K., Cao, W., & Li, Z. (2020). Dynamic stress concentration and failure characteristics around elliptical cavity subjected to impact loading. International Journal of Solids and Structures, 191, 401–417. https://doi.org/10.1016/j.ijsolstr.2020.01.009
  • Tide, D. (2003). The great Boston molasses flood of 1919. Stephen Puleo. Beacon Press.
  • Troyani, N., Jaimes, N., Sterlacci, G., & Gomes, C. J. (2005). Stress concentration effects in short cylindrical vessels with holes subjected to tension: A complete account. Journal of Pressure Vessel Technology, 127(2), 184–189. https://doi.org/10.1115/1.1904051
  • Withey, P. A. (1997). Fatigue failure of the de Havilland comet I. Engineering Failure Analysis, 4(2), 147–154. https://doi.org/10.1016/S1350-6307(97)00005-8
  • Zhang, W. (2016a). Evaluation of susceptibility to hydrogen embrittlement—A rising step load testing method. Materials Sciences and Applications, 7(8), 389. https://doi.org/10.4236/msa.2016.78035
  • Zhang, W. (2016b). Technical problem identification for the failures of the liberty ships. Challenges, 7(2), 20. https://doi.org/10.3390/challe7020020
  • Zirka, A. I., & Chernopiskii, D. I. (2003). Stress concentration in an axially compressed cylindrical shell of medium thickness with an elliptic opening. International Applied Mechanics, 39(11), 1335–1338. https://doi.org/10.1023/B:INAM.0000015605.53515.4a