1,059
Views
1
CrossRef citations to date
0
Altmetric
CHEMICAL ENGINEERING

Effect of low calcination temperature on the corrosion inhibition performance of biomass based Na2SiO3 on mild steel immersed in tap water

ORCID Icon & ORCID Icon
Article: 2165631 | Received 03 Sep 2022, Accepted 03 Jan 2023, Published online: 12 Jan 2023

References

  • Aktas, S., & Morcali, M. H. (2011). Gold uptake from dilute chloride solutions by a Lewatit TP 214 and activated rice husk. International Journal of Mineral Processing, 101(1–4), 63–21. https://doi.org/10.1016/j.minpro.2011.07.007
  • Al-Amiery, A., Salman, T. A., Alazawi, K. F., Shaker, L. M., Kadhum, A. A. H., & Takriff, M. S. (2020). Quantum chemical elucidation on corrosion inhibition efficiency of Schiff base: DFT investigations supported by weight loss and SEM techniques. International Journal of Low-Carbon Technologies, 15(2), 202–209. https://doi.org/10.1093/ijlct/ctz074
  • Alaneme, K. K., & Olusegun, S. J. (2012). Corrosion inhibition performance of lignin extract of sun flower (Tithonia Diversifolia) on medium carbon low alloy steel immersed in H2SO4 solution. Leonardo Journal of Science, 20(20), 59–70.
  • Ameer, M. A., & Fekry, A. M. (2010). Inhibition effect of newly synthesized heterocyclic organic molecules on corrosion of steel in alkaline medium containing chloride. International Journal of Hydrogen Energy, 35(20), 11387–11396. https://doi.org/10.1016/j.ijhydene.2010.07.071
  • Anaee, R. A. M. (2014). Sodium silicate and phosphate as corrosion inhibitors for mild steel in simulated cooling water system. Arabian Journal for Science and Engineering, 39(1), 153–162. https://doi.org/10.1007/s13369-013-0865-x
  • Aramaki, K. (2001). Inhibition effects of chromate-free, anion inhibitors on corrosion of zinc in aerated 0.5 M NaCl. Corrosion Science, 43(3), 591–604. https://doi.org/10.1016/S0010-938X(00)00085-8
  • Arockiasamy, P., Sheela, X. Q. R., Thenmozhi, G., Franco, M., Sahayaraj, J. W., & Santhi, R. J. (2014). Evaluation of corrosion inhibition of mild steel in 1 M hydrochloric acid solution by Mollugo cerviana. International Journal of Corrosion, 2014, 1–7. https://doi.org/10.1155/2014/679192
  • Asra, D., Othman, N. K., & Dasuki, Z. (2017). Nano-silicate inhibitor derived from rice husk for corrosion mitigation of steel in distilled water. AIP Conference Proceedings, 1838. https://doi.org/10.1063/1.4982176
  • Astuti, P., Rafdinal, R. S., Yamamoto, D., Andriamisaharimanana, V., & Hamada, H. (2022). Effective Use of sacrificial zinc anode as a suitable repair method for severely damaged RC members due to chloride attack. Civil Engineering Journal, 8(7), 1535–1548. https://doi.org/10.28991/CEJ-2022-08-07-015
  • Awizar, D. A., Othman, N. K., Jalar, A., Daud, A. R., Rahman, I. A., & Al-Hardan, N. H. (2013). Nanosilicate extraction from rice husk ash as green corrosion inhibitor. International Journal of Electrochemical Science, 8(2), 1759–1769. http://electrochemsci.org/papers/vol8/80201759.pdf
  • Azat, S., Sartova, Z., Bekseitova, K., & Askaruly, K. (2019). Extraction of high-purity silica from rice husk via hydrochloric acid leaching treatment. Turkish Journal of Chemistry, 43(5), 1258–1269. https://doi.org/10.3906/kim-1903-53
  • Bahri, H., Danaee, I., Rashed, G. R., & Zaarei, D. (2015). Effect of silica ratio on the corrosion behavior of nano-silica potassium silicate coatings on aluminum alloy 2024. Journal of Materials Engineering and Performance, 24(2), 839–847. https://doi.org/10.1007/s11665-014-1325-9
  • Bahri, S., Mahmud, H. B., Shafigh, P., & Majuar, E. (2019). Mechanical and durability properties of high strength high performance concrete incorporating rice husk ash. IOP Conference Series: Materials Science and Engineering, 536(1), 012028. https://doi.org/10.1088/1757-899X/536/1/012028
  • Behpour, M., Ghoreishi, S. M., Mohammadi, N., Soltani, N., & Salavati-Niasari, M. (2010). Investigation of some Schiff base compounds containing disulfide bond as HCl corrosion inhibitors for mild steel. Corrosion Science, 52(12), 4046–4057. https://doi.org/10.1016/j.corsci.2010.08.020
  • Bhawsar, J., Jain, P. K., & Jain, P. (2015). Experimental and computational studies of Nicotiana tabacum leaves extract as green corrosion inhibitor for mild steel in acidic medium. Alexandria Engineering Journal, 54(3), 769–775. https://doi.org/10.1016/j.aej.2015.03.022
  • Bhuvaneswari, T. K., Jeyaprabha, C., & Arulmathi, P. (2020). Corrosion inhibition of mild steel in hydrochloric acid by leaves extract of Tephrosia purpurea. Journal of Adhesion Science and Technology, 34(22), 2424–2447. https://doi.org/10.1080/01694243.2020.1766395
  • Bonetti, S., Spengler, R., Petersen, A., Aleixo, L. S., Merlo, A. A., & Tamborim, S. M. (2019). Surface-decorated silica with Schiff base as an anticorrosive coating for aluminium alloy 2024-T3. Applied Surface Science, 475(January), 684–694. https://doi.org/10.1016/j.apsusc.2018.12.298
  • Cheng, L., Lou, F., & Guo, W. (2020). Corrosion protection of the potassium silicate conversion coating. Vacuum, 176(March), 109325. https://doi.org/10.1016/j.vacuum.2020.109325
  • da Silva Nuernberg, N. B., Niero, D. F., & Bernardin, A. M. (2021). Valorization of rice husk ash and aluminum anodizing sludge as precursors for the synthesis of geopolymers. Journal of Cleaner Production, 298, 126770. https://doi.org/10.1016/j.jclepro.2021.126770
  • Della, V. P., Kühn, I., & Hotza, D. (2002). Rice husk ash as an alternate source for active silica production. Materials Letters, 57(4), 818–821. https://doi.org/10.1016/S0167-577X(02)00879-0
  • Demadis, K. D., Mavredaki, E., Stathoulopoulou, A., Neofotistou, E., & Mantzaridis, C. (2007). Industrial water systems: Problems, challenges and solutions for the process industries. Desalination, 213(1–3), 38–46. https://doi.org/10.1016/j.desal.2006.01.042
  • Ebenso, E. (2003). Effect of halide ions on the corrosion inhibition of mild steel in H2SO4 using methyl red. Bulletin of Electrochemistry, 19, 209–216. https://www.researchgate.net/publication/279892720_Effect_of_halide_ions_on_the_corrosion_inhibition_of_mild_steel_in_H_2SO4_using_methyl_red_-_Part_1
  • Eddy, N. O., Ekwumemgbo, P. A., & Mamza, P. A. P. (2009). Ethanol extract of Terminalia catappa as a green inhibitor for the corrosion of mild steel in H 2 SO 4. Green Chemistry Letters and Reviews, 2(4), 223–231. https://doi.org/10.1080/17518250903359941
  • El-Haddad, M. A. M., Bahgat Radwan, A., Sliem, M. H., Hassan, W. M. I., & Abdullah, A. M. (2019). Highly efficient eco-friendly corrosion inhibitor for mild steel in 5 M HCl at elevated temperatures: Experimental & molecular dynamics study. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-019-40149-w
  • Emregül, K. C., Düzgün, E., & Atakol, O. (2006). The application of some polydentate Schiff base compounds containing aminic nitrogens as corrosion inhibitors for mild steel in acidic media. Corrosion Science, 48(10), 3243–3260. https://doi.org/10.1016/j.corsci.2005.11.016
  • Erna, M., Herdini, H., & Futra, D. (2019). Corrosion Inhibition mechanism of mild steel by amylose-acetate/carboxymethyl chitosan composites in acidic media. International Journal of Chemical Engineering, 2019, 1–12. https://doi.org/10.1155/2019/8514132
  • Faiz, M., Zahari, A., Awang, K., & Hussin, H. (2020). Corrosion inhibition on mild steel in 1 M HCl solution by Cryptocarya nigra extracts and three of its constituents (alkaloids). RSC Advances, 10(11), 6547–6562. https://doi.org/10.1039/c9ra05654h
  • Fayomi, O. S. I., Akande, I. G., Oluwole, O. O., & Daramola, D. (2018). Effect of water-soluble chitosan on the electrochemical corrosion behaviour of mild steel. Chemical Data Collections, 17–18, 321–326. https://doi.org/10.1016/j.cdc.2018.10.006
  • Gao, H., Li, Q., Chen, F. N., Dai, Y., Luo, F., & Li, L. Q. (2011). Study of the corrosion inhibition effect of sodium silicate on AZ91D magnesium alloy. Corrosion Science, 53(4), 1401–1407. https://doi.org/10.1016/j.corsci.2011.01.008
  • Govardhane, S., & Shende, P. (2021). Integration of green nanotechnology with silica for corrosion inhibition. Corrosion Reviews, 39(3), 211–218. https://doi.org/10.1515/corrrev-2020-0115
  • Gupta, R., Bhardwaj, P., Mishra, D., Sanghi, S. K., & Amritphale, S. S. (2021). Novel non-hydroxyl synthesis and fabrication of advanced hybrid inorganic-organic geopolymeric coating material for corrosion protection. International Journal of Adhesion and Adhesives, 110, 102951. https://doi.org/10.1016/j.ijadhadh.2021.102951
  • Hamdy, A. S. (2006). Corrosion protection of aluminum composites by silicate/cerate conversion coating. Surface and Coatings Technology, 200(12–13), 3786–3792. https://doi.org/10.1016/j.surfcoat.2005.03.012
  • Hou, B., Li, X., Ma, X., Du, C., Zhang, D., Zheng, M., Xu, W., Lu, D., & Ma, F. (2017). The cost of corrosion in China. Npj Materials Degradation, 1(1). https://doi.org/10.1038/s41529-017-0005-2
  • Ismail, A. (2016). A review of green corrosion inhibitor for mild steel in seawater. ARPN Journal of Engineering and Applied Sciences, 11(14), 8710–8714. http://www.arpnjournals.org/jeas/research_papers/rp_2016/jeas_0716_4665.pdf
  • Javed, S. H., Naveed, S., Feroze, N., Zafar, M., & Shafaq, M. (2010). Crystal and amorphous silica from KMnO4 treated and untreated rice husk. Journal of Quality Technology and Management, VI(1), 81–90. http://pu.edu.pk/images/journal/iqtm/PDF-FILES/paper-5-Volume_VI_Issue-1-June-2010.pdf
  • Jayakumar, S., Nandakumar, T., Vadivel, M., Thinaharan, C., George, R. P., & Philip, J. (2020). Corrosion inhibition of mild steel in 1 M HCl using Tamarindus indica extract: Electrochemical, surface and spectroscopic studies. Journal of Adhesion Science and Technology, 34(7), 713–743. https://doi.org/10.1080/01694243.2019.1681156
  • Jembere, A. L. (2019). Extraction of silica gel from rice husk ash for promising sustainable industrialization: Statistical analysis. Journal of Materials Science and Engineering with Advanced Technology, 18(1–2), 21–42. https://doi.org/10.18642/jmseat_7100122004
  • Kalderis, D., Bethanis, S., Paraskeva, P., & Diamadopoulos, E. (2008). Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresource Technology, 99(15), 6809–6816. https://doi.org/10.1016/j.biortech.2008.01.041
  • Karekar, S. E., Bagale, U. D., Sonawane, S. H., Bhanvase, B. A., & Pinjari, D. V. (2018). A smart coating established with encapsulation of Zinc Molybdate centred nanocontainer for active corrosion protection of mild steel: Release kinetics of corrosion inhibitor. Composite Interfaces, 25(9), 785–808. https://doi.org/10.1080/09276440.2018.1439631
  • Khadom, A. A., Abd, A. N., & Ahmed, N. A. (2018). Xanthium strumarium leaves extracts as a friendly corrosion inhibitor of low carbon steel in hydrochloric acid: Kinetics and mathematical studies. South African Journal of Chemical Engineering, 25, 13–21. https://doi.org/10.1016/j.sajce.2017.11.002
  • Koch, G. (2017). Cost of corrosion. Elsevier Ltd.
  • Lan Lin, B., Tang Lu, J., & Kong, G. (2008). Synergistic corrosion protection for galvanized steel by phosphating and sodium silicate post-sealing. Surface and Coatings Technology, 202(9), 1831–1838. https://doi.org/10.1016/j.surfcoat.2007.08.001
  • Lemessa Jembere, A. (2017). Studies on the synthesis of silica powder from rice husk ash as reinforcement filler in rubber tire tread part: Replacement of commercial precipitated silica. International Journal of Materials Science and Applications, 6(1), 37. https://doi.org/10.11648/j.ijmsa.20170601.16
  • Madlangbayan, M. S., Diola, C. N. B., Tapia, A. K. G., Peralta, M. M., Peralta, E. K., Almeda, R. A., Bayhon, M. A. L., & Sundo, M. B. (2021). Corrosion inhibition of sodium silicate with nanosilica as coating in pre-corroded steel. Civil Engineering Journal, 7(11), 1806–1816. https://doi.org/10.28991/cej-2021-03091761
  • Manh, T. D., Huynh, T. L., Thi, B. V., Lee, S., Yi, J., & Nguyen Dang, N. (2022). Corrosion inhibition of mild steel in hydrochloric acid environments containing sonneratia caseolaris leaf extract. ACS Omega, 7(10), 8874–8886. https://doi.org/10.1021/acsomega.1c07237
  • Murmu, M., Saha, S. K., Murmu, N. C., & Banerjee, P. (2019). Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L−1 HCl medium: An experimental, density functional theory and molecular dynamics simulation study. Corrosion Science, 146, 134–151. https://doi.org/10.1016/j.corsci.2018.10.002
  • Muthamma, K., Kumari, P., Lavanya, M., & Rao, S. A. (2021). Corrosion inhibition of mild steel in acidic media by N-[(3,4-Dimethoxyphenyl)Methyleneamino]-4-Hydroxy-Benzamide. Journal of Bio- and Tribo-Corrosion, 7(1), 1–19. https://doi.org/10.1007/s40735-020-00439-7
  • Nada, A. M. A., Abou Yousef, H., & El-Gohary, S. (2002). Thermal degradation of hydrolyzed and oxidized lignins. Journal of Thermal Analysis and Calorimetry, 68(1), 265–273. https://doi.org/10.1023/A:1014925803350
  • Nwabanne, J. T., & Okafor, V. N. (2012). Adsorption and thermodynamics study of the inhibition of corrosion of mild steel In H2SO4 medium using Vernonia Amygdalina. Journal of Minerals and Materials Characterization and Engineering, 11(9), 885–890. https://doi.org/10.4236/jmmce.2012.119083
  • Omran, M. A., Fawzy, M., Mahmoud, A. E. D., & Abdullatef, O. A. (2022). Optimization of mild steel corrosion inhibition by water hyacinth and common reed extracts in acid media using factorial experimental design. Green Chemistry Letters and Reviews, 15(1), 214–230. https://doi.org/10.1080/17518253.2022.2032844
  • Othman, N. K., Yahya, S., & Awizar, D. A. (2016). Anticorrosive properties of nano silicate from paddy husk in salt medium. Sains Malaysiana, 45(8), 1253–1258. https://core.ac.uk/download/pdf/84306697.pdf
  • Panchenko, Y. M., Marshakov, A. I., Nikolaeva, L. A., & Igonin, T. N. (2020). Evaluating the reliability of predictions of first-year corrosion losses of structural metals calculated using dose-response functions for territories with different categories of atmospheric corrosion aggressiveness. Protection of Metals and Physical Chemistry of Surfaces, 56(7), 1249–1263. https://doi.org/10.1134/S207020512007014X
  • Pithawala, N. A., & Jain, B. (2012). Journal of advanced scientific research. Advancement of Science, 1(2), 19–23. [Online]. Available. http://www.sciensage.info/journal/1359303580JASR_3006121.pdf
  • Pramudita, M., Sukirno, S., & Nasikin, M. (2019). Synergistic corrosion inhibition effect of rice husk extract and KI for mild steel in H2SO4 solution. Bulletin of Chemical Reaction Engineering & Catalysis, 14(3), 697–704. https://doi.org/10.9767/bcrec.14.3.4249.697-704
  • Rajan, H. S., & Kathirvel, P. (2021). Sustainable development of geopolymer binder using sodium silicate synthesized from agricultural waste. Journal of Cleaner Production, 286, 124959. https://doi.org/10.1016/j.jclepro.2020.124959
  • Sa¸hin, E. A., Solmaz, R., Gecibesler, I. H., & Kardaş, G. (2020). Adsorption ability, stability and corrosion inhibition mechanism of Phoenix dactylifera extrat on mild steel. Materials Research Express, 7(1), 016585. https://doi.org/10.1088/2053-1591/ab6ad3
  • Schneider, C. R., & Stumm, W. (1964). Evaluation of corrosion in distribution systems. International Journal of Mineral Processing, 56(5), 621–632. https://doi.org/10.1002/j.1551-8833.1964.tb01252.x
  • Sehmi, A., Ouici, H. B., Guendouzi, A., Ferhat, M., Benali, O., & Boudjellal, F. (2020). Corrosion inhibition of mild steel by newly synthesized pyrazole carboxamide derivatives in HCl acid medium: Experimental and theoretical studies. Journal of the Electrochemical Society, 167(15), 155508. https://doi.org/10.1149/1945-7111/abab25
  • Singh, A. K., Chugh, B., Thakur, S., Pani, B., Lgaz, H., Chung, I.-M., Pal, S., & Prakash, R. (2020). Green approach of synthesis of thiazolyl imines and their impeding behavior against corrosion of mild steel in acid medium. Colloids and Surfaces A: Physicochemical and Engineering, 599(April), 124824. https://doi.org/10.1016/j.colsurfa.2020.124824
  • Skovhus, T. L., Eckert, R. B., & Rodrigues, E. (2017). Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry—Overview and a North Sea case study. Journal of Biotechnology, 256(Mic), 31–45. https://doi.org/10.1016/j.jbiotec.2017.07.003
  • Sunday Isaac Fayomi, O., & Patricia Idowu Popoola, A. (2019). Corrosion propagation challenges of mild steel in industrial operations and response to problem definition. Journal of Physics: Conference Series, 1378(2), 022006. https://doi.org/10.1088/1742-6596/1378/2/022006
  • Tang, Z. (2019). A review of corrosion inhibitors for rust preventative fluids. Current Opinion in Solid State and Materials Science, 23(4), 1–16. https://doi.org/10.1016/j.cossms.2019.06.003
  • Tsoeunyane, M. G., Makhatha, M. E., & Arotiba, O. A. (2019). Corrosion inhibition of mild steel by Poly(butylene succinate)-L-histidine Extended with 1,6-diisocynatohexane polymer composite in 1 M HCl. International Journal of Corrosion, 2019, 1–12. https://doi.org/10.1155/2019/7406409
  • Umoren, S. A., & Eduok, U. M. (2016). Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review. Carbohydrate Polymers, 140, 314–341. https://doi.org/10.1016/j.carbpol.2015.12.038
  • Umoren, S. A., Solomon, M. M., Obot, I. B., & Suleiman, R. K. (2018). Comparative studies on the corrosion inhibition efficacy of ethanolic extracts of date palm leaves and seeds on carbon steel corrosion in 15% HCl solution. Journal of Adhesion Science and Technology, 32(17), 1934–1951. https://doi.org/10.1080/01694243.2018.1455797
  • Venkatesan, R. P., & Pazhani, K. C. (2016). Strength and durability properties of geopolymer concrete made with ground granulated blast furnace slag and black rice husk ash. KSCE Journal of Civil Engineering, 20(6), 2384–2391. https://doi.org/10.1007/s12205-015-0564-0
  • Wang, C., Chen, J., Hu, B., Liu, Z., Wang, C., Han, J., Su, M., Li, Y., & Li, C. (2019). Modified chitosan-oligosaccharide and sodium silicate as efficient sustainable inhibitor for carbon steel against chloride-induced corrosion. Journal of Cleaner Production, 238, 117823. https://doi.org/10.1016/j.jclepro.2019.117823
  • Xavier Stango, S. A., & Vijayalakshmi, U. (2018). Studies on corrosion inhibitory effect and adsorption behavior of waste materials on mild steel in acidic medium. Journal of Asian Ceramic Societies, 6(1), 20–29. https://doi.org/10.1080/21870764.2018.1439608
  • Yuvakkumar, R., Elango, V., Rajendran, V., & Kannan, N. (2014). High-purity nano silica powder from rice husk using a simple chemical method. Journal of Experimental Nanoscience, 9(3), 272–281. https://doi.org/10.1080/17458080.2012.656709
  • Zeino, A., Abdulazeez, I., Khaled, M., Jawich, M. W., & Obot, I. B. (2018). Mechanistic study of polyaspartic acid (PASP) as eco-friendly corrosion inhibitor on mild steel in 3% NaCl aerated solution. Journal of Molecular Liquids, 250(November), 50–62. https://doi.org/10.1016/j.molliq.2017.11.160