825
Views
0
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Experimental modelling of hydraulic parameters for fluid flow in stratified porous media

, &
Article: 2166296 | Received 27 Oct 2022, Accepted 03 Jan 2023, Published online: 18 Jan 2023

References

  • Akossou, A. Y. J., & Palm, R. (2013). Impact of data structure on the estimators r-square and adjusted r-square in linear regression. International Journal of Mathematics and Computation, 20, 84–18. https://www.researchgate.net/publication/289526309
  • Alabi, O. O. (2015). Velocity profile of fluid flow in heterogeneous porous media. Electronic Journal of Geotechnical Engineering, 20(3), 943–952. https://doi.org/10.15242/iicbe.c0315085
  • Alabi, O. O., & Akanni, I. A. (2021). 3D fluid transport in layered heterogeneous porous media. In K. O. Alawode, R. B. Ibrahim, & A. U. Adebanjo (Eds.), 2nd International Conference on Engineering and Environmental Sciences (ICEES) (November 23-25, 2021): Re-thinking engineering and technology for environmental sustainability in the face of global pandemic (pp. 346–355). Faculties of Engineering and Environmental Sciences, Osun State University.
  • Alabi, O. O., & Akanni, I. A. (2022a). Fluid velocity profile in ascending and descending layer heterogeneous porous media. UNIOSUN Journal of Engineering and Environmental Sciences, 4(1). https://doi.org/10.36108/ujees/2202.40.0180
  • Alabi, O. O., & Akanni, I. A. (2022b). Single-phase fluid’s volume flux modelling in a layered heterogeneous porous media. In F. Chitea, I. Munteanu, L. Matenco, R. Dinescu, & I. Stanciu (Eds.), (1) 16th workshop of the international lithosphere program task force sedimentary basins and 7th Geoscience symposium of Romanian society of applied geophysics (pp. 93). Romanian Society of Applied Geophysics.
  • Alabi, O. O., Ojurongbe, T. A., & Sedara, S. O. (2019). Gradients of seepage velocity model for contaminant transport prediction. Scientific African, 4, e00087. https://doi.org/10.1016/j.sciaf.2019.e00087
  • Alabi, O. O., & Olaleye, K. O. (2016). Modifying Hagen-Poiseuille's equation for an inclined porous media with varying porosity. Journal of Indian Geophysical Union, 20(20), 231–240.
  • Alabi, O. O., & Sedara, S. O. (2020). Validity of series and parallel bed layer permeability equations from experimental and numerical modeling. Scientific African, 10, e00579. https://doi.org/10.1016/j.sciaf.2020.e00579
  • Aubertin, M., Cifuentes, E., Apithy, S. A., Bussière, B., Molson, J., & Chapuis, R. P. (2009). Analyses of water diversion along inclined covers with capillary barrier effects. Canadian Geotechnical Journal, 46(10), 1146–1164. https://doi.org/10.1139/T09-050
  • Banihashem, S., & Karrabi, M. (2020). Investigation of suspended particle size effects on clogging of soil filters under laminar flow. European Journal of Environmental and Civil Engineering, 1–10. https://doi.org/10.1080/19648189.2020.1761455
  • Bég, O. A., Espinoza, D. E. S., Kadir, A., Shamshuddin, M. D., & Sohail, A. (2018). Experimental study of improved rheology and lubricity of drilling fluids enhanced with nano-particles. Applied Nanoscience, 8(5), 1069–1090. https://doi.org/10.1007/s13204-018-0746-4
  • Bos, M. G. (2006). Basics of groundwater flow. In H. P. Ritzema (Ed.), Drainage principles and applications (3rd), pp. 225–261). International Institute for Land Reclamation and Improvement. https://www.researchgate.net/publication/40105995
  • Brouwer, D. R., Jansen, J. D., van der Starre, S., van Kruijsdijk, C. P. J. W., & Berentsen, C. W. J. 2001 May 21. Recovery Increase through Water Flooding with Smart Well Technology. All Days. https://doi.org/10.2118/68979-MS
  • Cao, R., Wang, Y., Cheng, L., Ma, Y. Z., Tian, X., & An, N. (2016). A new model for determining the effective permeability of tight formation. Transport in Porous Media, 112(1), 21–37. https://doi.org/10.1007/s11242-016-0623-0
  • Casagrande, A. (1937). Seepage through dams. New England Water Works Association, LI(2), 131–172.
  • Ceccarelli, F., la Scaleia, B., Russo, M., Cesqui, B., Gravano, S., Mezzetti, M., Moscatelli, A., d’Avella, A., Lacquaniti, F., & Zago, M. (2018). Rolling motion along an incline: Visual sensitivity to the relation between acceleration and slope. Frontiers in Neuroscience, 12, 12. https://doi.org/10.3389/fnins.2018.00406
  • Cedergren, R. H. (1997). Seepage, drainage, and flow nets (3rd) ed., Vol. 16). John Wiley & Sons.
  • Chen, Z., Ma, X., Zhan, H., Dou, Z., Wang, J., Zhou, Z., & Peng, C. (2022). Experimental investigation of solute transport across transition interface of porous media under reversible flow directions. Ecotoxicology and Environmental Safety, 238, 113566. https://doi.org/10.1016/j.ecoenv.2022.113566
  • Cherblanc, F., Ahmadi, A., & Quintard, M. (2007). Two-domain description of solute transport in heterogeneous porous media: Comparison between theoretical predictions and numerical experiments. Advances in Water Resources, 30(5), 1127–1143. https://doi.org/10.1016/j.advwatres.2006.10.004
  • Davidian, M., & Haaland, P. (1989). The relationship between transformation and weighting in regression, with application to biological and physical science.
  • Dawe, R. A., & Marcelle-de Silva, J. (2005). Viscous and permeability effects on miscible displacement in heterogeneous porous media. West Indian Journal of Engineering, 28(1), 69–84.
  • Dejam, M., & Hassanzadeh, H. (2022). Dispersion tensor in stratified porous media. Physical Review E, 105(6), 065115. https://doi.org/10.1103/PhysRevE.105.065115
  • Deng, H., & Li, L. (2021). Polynomial to non-Darcian flow study. IOP Conference Series: Earth and Environmental Science, 634(1), 012016. https://doi.org/10.1088/1755-1315/634/1/012016
  • Devore, J. L. (2011). Probability & statistics for engineering and the sciences (8th) ed.). Cengage Learning.
  • Dhakal, C. P. (2017). Dealing with outliers and influential points while fitting regression. Journal of Institute of Science and Technology, 22(1), 61–65. https://doi.org/10.3126/jist.v22i1.17741
  • Eagleman, J. R., & Jamison, V. C. (1962). Soil layering and compaction effects on unsaturated moisture movement. Soil Science Society of America Journal, 26(6), 519–522. https://doi.org/10.2136/sssaj1962.03615995002600060004x
  • Ferdows, M., Shamshuddin, M. D., Salawu, S. O., & Sun, S. (2022). Thermal cooling performance of convective non-Newtonian nanofluid flowing with variant power-index across moving extending surface. Scientific Reports, 12(1), 8714. https://doi.org/10.1038/s41598-022-12333-y
  • Freeze, A. R., & Cherry, J. A. (1979). Groundwater (1st) ed.). Prentice Hall.
  • Freund, R. J., Wilson, W. J., & Mohr, D. L. (2010). Inferences for two or more means. In Statistical Methods (pp. 245–320). Elsevier. https://doi.org/10.1016/B978-0-12-374970-3.00006-8
  • Govindarajan, S. (2019). An overview on extension and limitations of macroscopic darcy’s law for a single and multi-phase fluid flow through a porous medium. International Journal of Mining Science, 5(4). https://doi.org/10.20431/2454-9460.0504001
  • Gray, J. B., & Woodall, W. H. (1994). The maximum size of standardized and internally studentized residuals in regression analysis. The American Statistician, 48(2), 111–113. https://doi.org/10.1080/00031305.1994.10476035
  • Hansbo, S. (1960). Consolidation of clay, with special reference to influence of vertical sand drains [ Ph.D.]. Chalmers Tekniska Høgskola.
  • Hansbo, S. (2001). Consolidation equation valid for both darcian and non-Darcian flow. Géotechnique, 51(1), 51–54. https://doi.org/10.1680/geot.51.1.51.39357
  • Hosking, L. J., Thomas, H. R., & Sedighi, M. (2018). A dual porosity model of high-pressure gas flow for geoenergy applications. Canadian Geotechnical Journal, 55(6), 839–851. https://doi.org/10.1139/cgj-2016-0532
  • Howarth, R. J. (2017). Dictionary of mathematical geosciences. Springer International Publishing. https://doi.org/10.1007/978-3-319-57315-1
  • Hu, J., Ke, H., Lan, J.-W., Chen, Y.-M., & Meng, M. (2020). A dual-porosity model for coupled leachate and gas flow to vertical wells in municipal solid waste landfills. Géotechnique, 70(5), 406–420. https://doi.org/10.1680/jgeot.18.P.193
  • Huo, W., Zhu, Z., Hao, J., Zhang, W., & Peng, Y. (2022). Experimental study and numerical simulation on effectiveness of different capillary barriers in silt low subgrade. Bulletin of Engineering Geology and the Environment, 81(6), 246. https://doi.org/10.1007/s10064-022-02742-8
  • King, A. P., & Eckersley, R. J. (2019). Inferential Statistics IV: Choosing a Hypothesis Test. In Statistics for Biomedical Engineers and Scientists (pp. 147–171). Elsevier. https://doi.org/10.1016/B978-0-08-102939-8.00016-5
  • Ku, C.-Y., Hong, L.-D., Liu, C.-Y., Xiao, J.-E., & Huang, W.-P. (2021). Modeling transient flows in heterogeneous layered porous media using the space–time trefftz method. Applied Sciences, 11(8), 3421. https://doi.org/10.3390/app11083421
  • Kurasawa, T., Suzuki, M., & Inoue, K. (2020). Experimental assessment of solute dispersion in stratified porous media. Hydrological Research Letters, 14(4), 123–129. https://doi.org/10.3178/hrl.14.123
  • Leliavsky, S. (1955). Irrigation and hydraulic design: General principles of hydraulic design. In yjyy (Vol. 1). Chapman Hall.
  • Liang, X., Zhang, Y., Liu, J., Ma, E., & Zheng, C. (2019). Solute transport with linear reactions in porous media with layered structure: A semianalytical model. Water Resources Research, 55(6), 5102–5118. https://doi.org/10.1029/2019WR024778
  • Li, X., Ke, T., Wang, Y., Zhou, T., Li, D., Tong, F., & Wen, J. (2020). Hydraulic conductivity behaviors of karst aquifer with conduit-fissure geomaterials. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00030
  • Li, Y., Werner, A. D., Wen, Z., & Zhu, Q. (2022). Solute transport in permeable porous media containing a preferential flow feature: Investigation of non-Darcian flow effects. Journal of Hydrology, 604, 127210. https://doi.org/10.1016/j.jhydrol.2021.127210
  • Lu, C., Chen, Y., Zhang, C., & Luo, J. (2013). Steady-state freshwater–seawater mixing zone in stratified coastal aquifers. Journal of Hydrology, 505, 24–34. https://doi.org/10.1016/j.jhydrol.2013.09.017
  • Magnusson, B. M., Anissimov, Y. G., Cross, S. E., & Roberts, M. S. (2004). Molecular size as the main determinant of solute maximum flux across the skin. Journal of Investigative Dermatology, 122(4), 993–999. https://doi.org/10.1111/j.0022-202X.2004.22413.x
  • March, R., Doster, F., & Geiger, S. (2018). Assessment of CO 2 storage potential in naturally fractured reservoirs with dual‐porosity models. Water Resources Research, 54(3), 1650–1668.
  • Ng, C. W. W., Liu, J., Chen, R., & Xu, J. (2015). Physical and numerical modeling of an inclined three-layer (silt/gravelly sand/clay) capillary barrier cover system under extreme rainfall. Waste Management, 38, 210–221. https://doi.org/10.1016/j.wasman.2014.12.013
  • Obibuike, U. J., Kerunwa, A., Udechukwu, M. C., & Ekwueme, S. T. (2022). Simulation studies on comparative evaluation of waterflooding and gas injection in niger delta thin-bed reservoir. Open Journal of Yangtze Oil and Gas, 07(1), 65–83. https://doi.org/10.4236/ojogas.2022.71005
  • Odoi, B., Twumasi-Ankrah, S., Samita, S., & Al-Hassan, S. (2022). The efficiency of bartlett’s test using different forms of residuals for testing homogeneity of variance in single and factorial experiments-a simulation study. Scientific African, 17, e01323.
  • Oloro, O. J. (2020). Application of R-squared in the analysis of estimated water encroachment into a reservoir. Nigerian Journal of Environmental Sciences and Technology, 4(1), 70–76. https://doi.org/10.36263/nijest.2020.01.0155
  • Pavlovskaya, G. E., Meersmann, T., Jin, C., & Rigby, S. P. (2018). Fluid flow in a porous medium with transverse permeability discontinuity. Physical Review Fluids, 3(4), 044102. https://doi.org/10.1103/PhysRevFluids.3.044102
  • Peck, R., Olsen, C., & Devore, J. (2008). Introduction to statistics and data analysis (3rd) ed.). Thomson Brooks/Cole.
  • Popoola, O. I., Adegoke, J. A., & Alabi, O. O. (2009). The effects of porosity and angle of inclination on the deflection of fluid flow in porous media. Glob. J. of Pure and Appl. Sci, 15(3–4), 401–416. https://doi.org/10.4314/gjpas.v15i3-4.48568
  • Popoola, O. I., Adegoke, J. A., & Alabi, O. O. (2010a). The relationship between the angle of deflection and porosity ratio of stratified homogenous porous media. Journal of Applied and Environmental Sciences, 6(2), 35–41.
  • Popoola, O. I, Adegoke, J. A., Alabi, O. O., Akinluyi, F. O., & Fayemiwo, K. A. (2010b). Controlling contaminated fluid from polluting groundwater using porous media. Journal of American Science, 6(9).
  • Pötscher, B. M., & Preinerstorfer, D. (2022). A modern Gauss-Markov theorem? Really?
  • Romano, J. P., & Wolf, M. (2017). Resurrecting weighted least squares. Journal of Econometrics, 197(1), 1–19. https://doi.org/10.1016/j.jeconom.2016.10.003
  • Sai, Y., Priya, J., Anil Kumar, P., & Rao, B. R. S. (2020). Modelling recovery process in dual porosity and dual permeability reservoirs. International Research Journal of Engineering and Technology. www.irjet.net
  • Salimzadeh, S., & Khalili, N. (2014). Double porosity behaviour and application in geotechnical problems. In Numerical methods in geotechnical engineering (pp. 1031–1036). CRC Press. https://doi.org/10.1201/b17017-183
  • Sebben, M. L., & Werner, A. D. (2016a). A modelling investigation of solute transport in permeable porous media containing a discrete preferential flow feature. Advances in Water Resources, 94, 307–317. https://doi.org/10.1016/j.advwatres.2016.05.022
  • Sebben, M. L., & Werner, A. D. (2016b). On the effects of preferential or barrier flow features on solute plumes in permeable porous media. Advances in Water Resources, 98, 32–46. https://doi.org/10.1016/j.advwatres.2016.10.011
  • Shahrokhi, O., Fatemi, M., Sohrabi, M., Ireland, S., & Ahmed, K. (2014) Assessment of three phase relative permeability and hysteresis models for simulation of water-alternating-gas WAG injection in water-wet and mixed-wet systems. All Days. https://doi.org/10.2118/169170-MS
  • Shamshuddin, M. D., Mishra, S. R., Kadir, A., & Bég, O. A. (2019). Unsteady chemo-tribological squeezing flow of magnetized bioconvection lubricants: Numerical study. Journal of Nanofluids, 8(2), 407–419. https://doi.org/10.1166/jon.2019.1587
  • Silliman, S. E., Zheng, L., & Conwell, P. (1998). The use of laboratory experiments for the study of conservative solute transport in heterogeneous porous media. In Hydrogeology Journal (Vol. 6). Springer-Verlag.
  • Solnyshkina, O. A., Batyrshin, E. S., & Pityuk, Yu, A. (2021). Investigation of hydrodynamic flows in micromodels of double porosity media. Fluid Dynamics, 56(4), 451–459. https://doi.org/10.1134/S001546282104011X
  • Suárez, E., Pérez, C., Rivera, R., & Martínez, M. (2017). Weighted least-squares linear regression. In Applications of regression models in epidemiology (pp. 117–128). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119212515.ch8
  • Sun, S., & Zhang, T. (2020). Recent progress in multiscale and mesoscopic reservoir simulation. In Reservoir simulations (pp. 205–258). Elsevier. https://doi.org/10.1016/B978-0-12-820957-8.00005-8
  • Usman, Shaheen, S., Arain, M. B., Nisar, K. S., Albakri, A., & Shamshuddin, M. D. (2022). A case study of heat transmission in a Williamson fluid flow through a ciliated porous channel: A semi-numerical approach. Case Studies in Thermal Engineering, 102523. https://doi.org/10.1016/j.csite.2022.102523
  • Valbuena, R., Hernando, A., Manzanera, J. A., Görgens, E. B., Almeida, D. R. A., Silva, C. A., & García-Abril, A. (2019). Evaluating observed versus predicted forest biomass: R-squared, index of agreement or maximal information coefficient? European Journal of Remote Sensing, 52(1), 345–358. https://doi.org/10.1080/22797254.2019.1605624
  • Wang, L., Liu, B., Guo, Y., Li, J., Yang, H., Liu, H., & Heng, S. (2022). Experimental investigation of the cementation and tensile properties of cement to formation interface considering surface irregularity and drilling mud residue. Journal of Petroleum Exploration and Production Technology. https://doi.org/10.1007/s13202-022-01585-z
  • Wang, H., Qian, H., & Gao, Y. (2020). Non-darcian flow in loess at low hydraulic gradient. Engineering Geology, 267. https://doi.org/10.1016/j.enggeo.2020.105483
  • Wei, W., Xia, Y., & Cai, J. (2021). Tortuosity in two-dimensional and three-dimensional fractal porous media: A numerical analysis. In Modelling of Flow and Transport in Fractal Porous Media (pp. 25–36). Elsevier. https://doi.org/10.1016/B978-0-12-817797-6.00007-5
  • Xu, Z., & Tartakovsky, A. M. (2017). Method of model reduction and multifidelity models for solute transport in random layered porous media. Physical Review E, 96(3), 033314. https://doi.org/10.1103/PhysRevE.96.033314
  • Zhang, W., & Yuan, S. (2019). Characterising preferential flow in landfilled municipal solid waste. Waste Management, 84, 20–28.