991
Views
2
CrossRef citations to date
0
Altmetric
SYSTEMS & CONTROL

Flocking and formation control for a group of nonholonomic wheeled mobile robots

, ORCID Icon, , &
Article: 2167566 | Received 15 Jun 2022, Accepted 01 Jan 2023, Published online: 19 Apr 2023

References

  • Ban, Z., Hu, J., Lennox, B., & Arvin, F. (2021). . In Mobile Networks and Applications 26 2461–18 https://doi.org/10.1007/s11036-021-01785-7 .
  • Beaver, L. E., & Malikopoulos, A. A. (2021). An overview on optimal flocking. Annual Reviews in Control, 51, 88–99. https://doi.org/10.1016/j.arcontrol.2021.03.004
  • Brockett, R. (1983). Asymptotic stability and feedback stabilization. In R. Brockett, R. Millman, & H. Sussmann (Eds.), Differential Geometric Control Theory (pp. 181–191). Birkhauser.
  • Cao, Y., Stuart, D., Ren, W., & Meng, Z. (2011). Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: Algorithms and experiments. IEEE Transactions on Control Systems Technology, 19(4), 929–938. https://doi.org/10.1109/TCST.2010.2053542
  • Chung, S.-J., & Slotine, -J.-J. E. (2009). Cooperative robot control and concurrent synchronization of lagrangian systems. IEEE Transactions on Robotics, 25(3), 686–700. https://doi.org/10.1109/TRO.2009.2014125
  • Dai, F., Chen, M., Wei, X., & Wang, H. (2019). Swarm intelligence-inspired autonomous flocking control in uav networks. IEEE Access, 7, 61786–61796. https://doi.org/10.1109/ACCESS.2019.2916004
  • de Kerckhove, D. T., & Shuter, B. J. (2022). Predation on schooling fish is shaped by encounters between prey during school formation using an ideal gas model of animal movement. Ecological Modelling, 470, 110008. https://doi.org/10.1016/j.ecolmodel.2022.110008
  • Dong, W. (2011). Flocking of multiple mobile robots based on backstepping. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41(2), 414–424. https://doi.org/10.1109/TSMCB.2010.2056917
  • Dörfler, F., & Francis, B. (2010). Geometric analysis of the formation problem for autonomous robots. IEEE Transactions on Automatic Control, 55(10), 2379–2384. https://doi.org/10.1109/TAC.2010.2053735
  • Francis, B. A., & Maggiore, M. (2016). Flocking and rendezvous in distributed robotics. Springer https://doi.org/10.1007/978-3-319-24729-8.
  • Khaleidan, M., Tairan, L., Fernandez-Kim, V., & de Queiroz, M. (2019). Flocking and target interception control for formations of nonholonomic kinematic agents. IEEE Transactions on Control System Technology doi:10.1109/TCST.2019.2914994.
  • Khalil, H. K. (2002). Nonlinear systems (third) ed.). volume 115.
  • Liu, L., Guo, R., Ji, J., Miao, Z., & Zhou, J. (2020). Practical consensus tracking control of multiple nonholonomic wheeled mobile robots in polar coordinates. International Journal of Robust and Nonlinear Control, 30(10), 3831–3847. https://doi.org/10.1002/rnc.4967
  • Liu, Z., Turgut, A. E., Lennox, B., & Arvin, F. (2021). Self-organised flocking of robotic swarm in cluttered environments. In Annual Conference Towards Autonomous Robotic Systems, pages 126–135. Springer.
  • Liu, L., Yu, J., Ji, J., Miao, Z., & Zhou, J. (2019). Cooperative adaptive consensus tracking for multiple nonholonomic mobile robots. International Journal of Systems Science, 50(8), 1556–1567. https://doi.org/10.1080/00207721.2019.1617366
  • Moshtagh, N., & Jadbabaie, A. (2007). Distributed geodesic control laws for flocking of nonholonomic agents. IEEE Transactions on Automatic Control, 52(4), 681–686. https://doi.org/10.1109/TAC.2007.894528
  • Nuño, E., Ortega, R., Basañez, L., & Hill, D. (2011). Synchronization of networks of nonidentical euler-lagrange systems with uncertain parameters and communication delays. IEEE Transactions on Automatic Control, 56(4), 935–941. https://doi.org/10.1109/TAC.2010.2103415
  • Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51(3), 401–420. https://doi.org/10.1109/TAC.2005.864190
  • Parrish, J. K., Viscido, S. V., & Grunbaum, D. (2002). Self-organized fish schools: An examination of emergent properties. The Biological Bulletin, 202(3), 296–305. https://doi.org/10.2307/1543482
  • Qiu, H., & Duan, H. (2020). A multi-objective pigeon-inspired optimization approach to uav distributed flocking among obstacles. Information Sciences, 509, 515–529. https://doi.org/10.1016/j.ins.2018.06.061
  • Regmi, A., Sandoval, R., Byrne, R., Tanner, H., & Abdallah, C. (2005). Experimental implementation of flocking algorithms in wheeled mobile robots. In Proceedings of the 2005, American Control Conference, 4917–4922.
  • Ren, W., & Beard, R. W. (2004). Decentralized scheme for spacecraft formation flying via the virtual structure approach. Journal of Guidance, Control, and Dynamics, 27(1), 73–82. https://doi.org/10.2514/1.9287
  • Ren, W., Beard, R., & Atkins, E. (2007). Information consensus in multivehicle coperative control. IEEE Control Systems Magazine, 27(2), 71–82 doi:10.1109/MCS.2007.338264.
  • Reynolds, C. (1987). Flocks, Herds, and Schools: A Distributed Behavioral Model. In 14th annual conference on computer graphics and interactive techniques (SIGGRAPH 87), 25–34, New York.
  • Rozenheck, O., Zhao, S., & Zelazo, D. (2015). A proportional-integral controller for distance-based formation tracking. In 2015 European Control Conference (ECC)IEEE
  • Sahu, B. K., & Subudhi, B. (2017). Flocking control of multiple auvs based on fuzzy potential functions. IEEE Transactions on Fuzzy Systems, 26(5), 2539–2551. https://doi.org/10.1109/TFUZZ.2017.2786261
  • Saradagi, A., Muralidharan, V., Krishnan, V., Menta, S., & Mahindrakar, A. D. (2017). Formation control and trajectory tracking of nonholonomic mobile robots. IEEE Transactions on Control Systems Technology, 26(6), 2250–2258. https://doi.org/10.1109/TCST.2017.2749563
  • Scardovi, L., Arcak, M., & Sontang, E. (2010). Synchronization of interconnected systems with applications to biochemical networks: An input-output approach. IEEE Transactions on Automatic Control, 55(6), 1367–1379. https://doi.org/10.1109/TAC.2010.2041974
  • Subudhi, B., Rayguru, M. M., Filaretov, V., & Zuev, A. (2017). Design of a consensus based flocking control of multiple autonomous underwater vehicles using sliding mode approach Katalinic, B. DAAAM International . In Annals of DAAAM & Proceedings 28 (pp. 978-3-902734-11-2 https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2017/001.pdf).
  • Sun, Z., Anderson, B. D., Deghat, M., & Ahn, H.-S. (2017). Rigid formation control of double-integrator systems. International Journal of Control, 90(7), 1403–1419. https://doi.org/10.1080/00207179.2016.1207100
  • Sun, Z., Mou, S., Deghat, M., & Anderson, B. D. (2015). Finite time distributed distance-constrained shape stabilization and flocking control for d-dimensional undirected rigid formations. International Journal of Robust and Nonlinear Control, 26(13), 2824–2844. https://doi.org/10.1002/rnc.3477
  • Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003). Stable flocking of mobile agents, part i: Fixed topology. In 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), 2, 2010–2015. IEEE.
  • Toner, J., & Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory of flocking. Physical Review E, 58(4), 4828. https://doi.org/10.1103/PhysRevE.58.4828
  • Valbuena-Reyes, L., & Tanner, H. (2014). Flocking, formation control, and path following flocking, formation, and path following for a group of mobile robots. IEEE Transactions on Control System Technology, 23(4), 1269–1282 doi:10.1109/TCST.2014.2363132.
  • Vos, E., van der Schaft, A. J., & Scherpen, J. M. (2016). Formation control and velocity tracking for a group of nonholonomic wheeled robots. IEEE Transactions on Automatic Control, 61(9), 2702–2707. https://doi.org/10.1109/TAC.2015.2504547
  • Zhao, X.-W., Guan, Z.-H., Li, J., Zhang, X.-H., & Chen, C.-Y. (2017). Flocking of multi-agent nonholonomic systems with unknown leader dynamics and relative measurements. International Journal of Robust and Nonlinear Control, 27(17), 3685–3702 https://doi.org/10.1002/rnc.3762.