1,886
Views
0
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Wear characteristics, reduction techniques and its application in automotive parts – A review

, , , ORCID Icon &
Article: 2170741 | Received 23 Jul 2022, Accepted 17 Jan 2023, Published online: 20 Mar 2023

References

  • Abadias, G., Chason, E., Keckes, J., Sebastiani, M., Thompson, G., Barthel, E., Doll, G., Murray, C., Stoessel, C., & Martinu, L. (2018). Review Article: Stress in thin films and coatings: Current status, challenges, and prospects. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 36(2), 020801–33. https://doi.org/10.1116/1.5011790
  • Akhbarizadeh, A., & Javadpour, S. (2013). Investigating the effect of as-quenched vacancies in the final microstructure of 1.2080 tool steel during the deep cryogenic heat treatment. Mater, 93, 247–250. https://doi.org/10.1016/j.matlet.2012.11.081
  • Amini, K., Akhbarizadeh, A., & Javadpour, S. (2012). Javadpour S. Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic heat treatment. Vacuum, 86(10), 1534–1540. https://doi.org/10.1016/j.vacuum.2012.02.013
  • Amini, K., Akhbarizadeh, A., & Javadpour, S. (2014). Investigating the effect of quench environment and deep cryogenic treatment on the wear behavior of AZ91. Materials & Design (1980-2015), 54, 154–160. https://doi.org/10.1016/j.matdes.2013.07.051
  • ASTM G105-89. (1997). Standard test method for conducting wet sand/ rubber wheel tests, Annual Book of ASTM Standards (pp. 424–432). ASTM International. https://standards.globalspec.com/std/3865560/astm-g105-89-1997-e1
  • ASTM G65-94. (1997). Standard test method for measuring abrasion using the dry sand/rubber wheel apparatus, Annual Book of ASTM Standards (pp. 239–250). ASTM International.
  • ASTM G76-95. (1997). Standard test method for conducting erosion tests by solid particle impingement using gas jets, Annual Book of ASTM Standards (pp. 305–309). ASTM International.
  • ASTM G99-95a, (1997). Standard test method for wear testing with a pin-on-disc apparatus. Annual Book of ASTM Standards, 03.02(1997) 392-396.
  • ASTM Standard, G76-95. (1995). Standard Practice for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets, Annual Book of ASTM Standards Vol. 3: 2 321–325. ASTM.
  • Baharin, A. F. S., Ghazali, M. J., & Wahab, J. A. (2016). Laser surface texturing and its contribution to friction and wear reduction: A brief review. Ind. Lubr. Tribol., 68(1), 57–66. https://doi.org/10.1108/ILT-05-2015-0067
  • Balaraju, J. N., Sankara Narayanan, T. S. N., & Seshadri, S. K. (2003). Electroless Ni-P Composite Coatings. J. Appl. Electrochem., 33(9), 807–816. https://doi.org/10.1023/A:1025572410205
  • Baldissera, P. (2009). Fatigue scatter reduction through deep cryogenic treatment on the 18NiCrMo5 carburized steel. Materials & Design, 30(9), 3636–3642. https://doi.org/10.1016/j.matdes.2009.02.019
  • Baldissera, P., & Delprete, C. (2009). Effects of deep cryogenic treatment on static mechanical properties of 18NiCrMo5 carburized steel. Mater. Des., 30(5), 1435–1440. https://doi.org/10.1016/j.matdes.2008.08.015
  • Balic, E. E., & Blanchet, T. A. (2005). 15th International Conference on Wear of Materials: Editors: Blau, P. and Shaffer, S.L., Part II. April 24-28, San-Deigo, California, 259:876–881
  • Bayer, R. G. (2002). Wear analysis for engineers (pp. 1–360). HNB Publishers.
  • Bhushan, B. (2008). Nanotribology, nanomechanics and nanomaterials characterization. Philos. Trans. R. Soc. A, 366(1869), 1351–1381. https://doi.org/10.1098/rsta.2007.2163
  • Bieda, M., Beyer, E., & Lasagni, A. (2010). Direct Fabrication of Hierarchical Microstructures on Metals by Means of Direct Laser Interference Patterning. J. Eng. Mater. Technol., 132(3), 31015–31016. https://doi.org/10.1115/1.4001835
  • Bi, J., Li, L., Peng, J., Liao, J., & Yuan Gao, Y. (2021). Effect of deep cryogenic treatment on microstructure and properties of M35 high speed steel. J. Phys.: Conf. Ser, 2044(1), 1–9. https://doi.org/10.1088/1742-6596/2044/1/012014
  • Boidi, G., Grutzmacher, P., Kadiric, A., Profito, F., Machado, I. F., Gachot, C., & Dini, D. (2021). Fast laser surface texturing of spherical samples to improve the frictional performance of elasto-hydrodynamic lubricated contacts. Friction, 9(5), 1227–1241. https://doi.org/10.1007/s40544-020-0462-4
  • Budinski, K. G. (1993). The wear resistance of diffusion treated surfaces. Wear, 162-164, 757–762. https://doi.org/10.1016/0043-1648(93)90076-X
  • Chan, C. H., Tang, S. W., Mohd, N. K., Lim, W. H., Yeong, S. K., & Idris, Z. (2018). Tribological behavior of bio-lubricant base stocks and additives. Renew. Sustain. Energy Rev., 93, 145–157. https://doi.org/10.1016/j.rser.2018.05.024
  • Chen, W., Fang, B., Zhang, D., Meng, X., & Zhang, S. (2017). Thermal stability and mechanical properties of HVOF/PVD duplex ceramic coatings produced by HVOF and cathodic vacuum arc. Ceram. Int., 43(10), 7415–7423. https://doi.org/10.1016/j.ceramint.2017.02.151
  • Chen, Z., Wu, C., Zhou, H., Zhang, G., & Yan, H. (2022). A high-efficiency preparation method of super wear-resistant superhydrophobic surface with hierarchical structure using wire electrical discharge machining, Surface and Coatings Technology. 444, 1–12. https://doi.org/10.1016/j.surfcoat.2022.128673
  • Chi, Y., Gu, G., Yu, H., & Chen, C. (2018). Laser surface alloying on aluminum and its alloys: A review. Opt. Lasers Eng., 100, 23–37. https://doi.org/10.1016/j.optlaseng.2017.07.006
  • Cho, S., Ko, S.-J., Yoo, J.-S., Park, J.-C., Yoo, Y.-H., & Kim, J.-G. (2021). Optimization of pickling solution for improving the phosphatability of advanced high-strength steels. Materials, 14(1), 1–15. https://doi.org/10.3390/ma14010233
  • Ciski, A., Wach, P., Jelenkowski, J., Nawrocki, P., & Hradil, D. (2019). Deep Cryogenic Treatment and Nitriding of 42CrMo4 Steel. HTM Journal of Heat Treatment and Materials, 74(1), 12–22. https://doi.org/10.3139/105.110373
  • Condea, F. F., Diazb, J. A. A., Faria, D. S., & Tschiptschinc, A. P. (2019). Dependence of Wear and Mechanical Behavior of Nitrocarburized/CrN/DLC Layer on Film Thickness, Materials Research, 22(2), 1–10. https://doi.org/10.1590/1980-5373-MR-2018-0499
  • Duminica, F. D., BelchiL, R., Libralesso, L., & Mercier, D. (2018). Investigation of Cr(N)/DLC multilayer coatings elaborated by PVD for high wear resistance and low friction applications. Surface and Coatings Technology, 337, 396–403. https://doi.org/10.1016/j.surfcoat.2018.01.052
  • Erdemir, A., & Holmberg, K. (2015). Energy Consumption Due to Friction in Motored Vehicles and Low-Friction Coatings to Reduce It. In S. Cha & A. Erdemir (Eds.), Coating Technology for Vehicle Applications. Cham: Springer. https://doi.org/10.1007/978-3-319-14771-0_1
  • Fabris, D., Lasagni, A., Fredel, M., & Henriques, B. (2019). Direct Laser Interference Patterning of Bio-ceramics: A Short Review. Ceramics, 2(4), 578–586. https://doi.org/10.3390/ceramics2040045
  • Fantineli, D. G., Parcianello, C. T., Rosendo, T. S., Reguly, A., & Tier, M. D. (2020). Effect of heat and cryogenic treatment on wear and toughness of HSS AISI M2. J. of Mat. Res. and Tech., 9(6), 12354–12363. https://doi.org/10.1016/j.jmrt.2020.08.090
  • Fletcher, P. C., Felts, J. R., Dai, Z., Jacobs, T. D., Zeng, H., Lee, W., Sheehan, P. E., Carlisle, J. A., Carpick, R. W., & King, W. P. (2010). Wear-Resistant Diamond Nanoprobe Tips with Integrated Silicon Heater for Tip-based Nanomanufacturing. ACS Nano, 4(6), 3338–3344. https://doi.org/10.1021/nn100203d
  • Fuadi, Z. (2014). Analysis of Vibration Generated by the Rubbing of Flat Surfaces. Makara Journal of Technology, 18(3), 115–120. https://doi.org/10.7454/mst.v18i3.2953
  • Gachot, C., Rosenkranz, A., Hsu, S., & Costa, H. (2017). A critical assessment of surface texturing for friction and wear improvement. Wear, 372, 21–41. https://doi.org/10.1016/j.wear.2016.11.020
  • Gao, X., Fu, Y., Jiang, D., Wang, D., Weng, L., Yang, J., Sun, J., & Ming, H. M. (2018). Responses of TMDs-metals Composite Films to Atomic Oxygen Exposure, Journal of Alloys and Compounds, 765, 854–861. https://doi.org/10.1016/j.jallcom.2018.06.311
  • Garcia-Giron, A., Romano, J. M., Batal, A., Dashtbozorg, B., Dong, H., Solanas, E. M., Angos, U., Walker, M., Penchev, P., & Dimov, S. S. (2019). Durability and wear resistance of laser-textured hardened stainless steel surfaces with hydrophobic properties. Langmuir, 35(15), 5353–5363. https://doi.org/10.1021/acs.langmuir.9b00398
  • Gee, M. G., & Owen-Jones, S. ASTM B611-85. (1997). NPL REPORT MAC CP1 NPL REPORT CMMT (A)92. In Wear Testing Methods and Their Relevance to Industrial Wear Problems (pp. 1–59). https://eprintspublications.npl.co.uk/3426/1/cmmt92.pdf
  • Ghosh, S., Choudhury, D., Roy, T., Mamat, A. B., Masjuki, H. H., & Pingguan-Murphy, B. (2015). Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid. Sci. Technol. Adv. Mater., 16(3), 1–11. https://doi.org/10.1088/1468-6996/16/3/035002
  • Govind, G., Henckel, J., Hothi, H., Sabah, S., Skinner, J., & Hart, A. (2015). Method for the location of primary wear scars from retrieved metal on metal Hip replacements. BMC Musculoskeletal Disorders, 16(1), 1–5. https://doi.org/10.1186/s12891-015-0622-2
  • Grutzmacher, P. G., Suarez, S., Tolosa, A., Gachot, C., Song, G., Wang, B., Presser, V., Mücklich, F., Anasori, B., & Rosenkranz, A. (2022). Correction to Superior Wear-Resistance of Ti3C2Tx Multi-Layer Coatings. ACS Nano, 16(2), 3433–3442. https://doi.org/10.1021/acsnano.2c00535
  • Gullino, A., Matteis, P., & D’Aiuto, F. (2019). Review of aluminum-to-steel welding technologies for car-body applications. Metals, 9(3), 315–340. https://doi.org/10.3390/met9030315
  • Gu, W., Qi, S., He, W., Chu, Lu, Z., Zhang, G., & Chu, K. (2022). Different tribological behaviors in multilayer 2d graphene and 3d graphene foam modified DLC/h-DLC film in moist air. Tribology Letters, 70(1), 1–16. https://doi.org/10.1007/s11249-021-01556-1
  • Gu, K., Wang, J., & Zhou, Y. (2014). Effect of cryogenic treatment on wear resistance of Ti–6Al–4V alloy for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 30, 131–139. https://doi.org/10.1016/j.jmbbm.2013.11.003
  • Hareesha, M., & Jeevan, T. P. (2014). Modification of abrasive wear testing machine and testing of materials. International Journal of Science and Research, 3(10), 263–268. https://www.ijsr.net/get_abstract.php?paper_id=SEP14593
  • Holmberg, K., & Erdemir, A. (2017). Influence of tribology on global energy consumption, costs and emissions. Friction, 5(3), 263–284. https://doi.org/10.1007/s40544-017-0183-5
  • Jacobs, T. D., & Carpick, R. W. (2013). Nanoscale Wear as a Stress-Assisted Chemical Reaction. Nature Nanotechnology, 8(2), 108–112. https://doi.org/10.1038/nnano.2012.255
  • Jiaqiang, G., Lei, L., Yating, W., Bin, S., & Wenbin, H. (2006). Electroless Ni–P–SiC composite coatings with superfine particles. Surface and Coatings Technology, 200(20–21), 5836–5842. https://doi.org/10.1016/j.surfcoat.2005.08.134
  • Jibran, W., Hogan, J. D., & Mcdonald, A. (2021). Influence of Spray Parameters on the Thickness, Hardness and Porosity of low-pressure Cold Sprayed WC-Ni Coatings. Research Square, 2021, 1–20. https://doi.org/10.21203/rs.3.rs-225879/v1
  • Jokari, M., Mahboubi, F., & Dehghani, K. (2017). Structure and tribological behavior of diamond-like carbon coatings deposited on the martensitic stainless steel: The influence of gas composition and temperature. Diamond and Related Materials, 77, 1–12. https://doi.org/10.1016/j.diamond.2017.11.007
  • Jones, M., Nation, B., Wellington-Johnson, J., Curry, J., Kustas, A., lu, P., Chandross, M., & Argibay, N. (2020). Evidence of inverse Hall-petch behavior and low friction and wear in high entropy alloys. Scientific Reports, 10(1), 10151–10159. https://doi.org/10.1038/s41598-020-66701-7
  • Jovicevic-Klug, P., Jenko, M., Jovicevic-Klug, M., Batic, B. S., Kovac, J., & Podgornik, B. (2021). Effect of deep cryogenic treatment on surface chemistry and microstructure of selected high-speed steels. Applied Surface Science, 548, 1–11.
  • Jovicevic-Klug, M., Jovicevic-Klug, P., Kranjec, T., & Podgornik, B. (2021). Cross-effect of surface finishing and deep cryogenic treatment on corrosion resistance of AISI M35 steel. Journal of Materials Research and Technology, 14, 2365–2381. https://doi.org/10.1016/j.jmrt.2021.07.134
  • Jovicevic-Klug, P., & Podgornik, B. (2020). Review on the Effect of Deep Cryogenic Treatment of Metallic Materials in Automotive Applications. Metals, 10(4), 1–12.
  • Kang, C., Liu, F., Jiang, Z., Suo, H., Yu, X., Zhang, H., & Ding, S. (2021). Effect of cryogenic treatment on microstructure evolution and mechanical properties of high nitrogen plastic die steel. Journal of Materials Research and Technology, 15, 5128–5140.
  • Killgore, J. P., Geiss, R. H., & Hurley, D. C. (2011). Continuous Measurement of Atomic Force Microscope Tip Wear by Contact Resonance Force Microscopy. small, 7(8), 1018–1022.
  • Kim, T. S., Park, Y. G., & Wey, M. Y. (2003). Characterization of Ti-6A1-4V alloy modified by plasma carburizing process. Mater. Sci. Eng. A, 361, 275–280.
  • Klimczak, T., & Jonasson, M. (1994). Analysis of real contact area and change of surface texture on deep drawn steel sheets. Wear, 179, 129–135.
  • Kong, N., Wei, B., Li, D., Zhuang, Y., Sun, G., & Wang, B. (2020). A study on the tribological property of MoS2/Ti–MoS2/Si multilayer nanocomposite coating deposited by magnetron sputtering. RSC Adv., 10, 9633–9642.
  • Koszela, W., Pawlus, P., Reizer, R., & Liskiewicz, T. (2018). The combined effect of surface texturing and DLC coating on the functional properties of internal combustion engines Tribol Int. 127, 470–477.
  • Krupka, I. (2013). Measurement of Pressure Distribution: Encyclopedia of Tribology (pp. 3479). (Q. J & Y. W. Wang, Eds). Springer US.
  • Li, X., & Bhushan, B. (1999a). Micro/nanomechanical and tribological characterization of ultrathin amorphous carbon coatings. J. Mater. Res., 14, 2328–2337.
  • Li, B., Li, C., Wang, Y., & Jin, X. (2018). Effect of Cryogenic Treatment on Microstructure and Wear Resistance of Carburized 20CrNi2MoV Steel. Metals, 8, 1–13.
  • Li, B., Li, C., Wang, Y., & Jin, X. (2018). Effect of Cryogenic Treatment on Microstructure and Wear Resistance of Carburized 20crni2mov Steel. Metals, 8, 1–13.
  • Li, X., Li, B., Zhang, Q., Shi, T., Yu, J., Tang, M., & Huang, X. (2016). Fabrication of micro- and nano-scale hierarchical structures on Al surface with enhanced wettability, anti-corrosion and wear resistance. Mater. Express, 6, 10–18.
  • Lin, C. L., Fallahnezhad, K., Brinji, O., & Meehan, P. A. (2022). Mitigation of False Brinelling in a Roller Bearing: A Case Study of Four Types of Greases. Tribol Lett, 70(1), 1–22.
  • Lin, Q. Y., Wei, Z. Y., Wang, N., & Chen, W. (2013). Analysis on the lubrication performances of journal bearing system using computational fluid dynamics and fluid–structure interaction considering thermal influence and cavitation. Tribology International, 64, 8–15.
  • Lin, S., Yu, S., & Wu, M. (2008). Effect of different coating materials on cutting performance in high-speed machining of mold steels. Key Eng. Mater., 364–366, 1026–1031.
  • Liu, J., Grierson, D. S., Moldovan, N., Notbohm, J., & Li, S. (2010a). Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultra-nanocrystalline diamond probes. Small, 6(10), 1140–1149.
  • Liu, P., Kan, Q., & Yin, H. (2019). Effect of grain size on wear resistance of nanocrystalline NiTi shape memory alloy. Mater. Lett., 241, 43–46.
  • Liu, J., Notbohm, J. K., Carpick, R. W., & Turner, K. T. (2010b). Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano, 4(7), 3763–3772.
  • Li, Y., Wang, S., & Wang, Q. (83–91). (2017). Enhancement of Tribological Properties of Polymer Composites Reinforced by Functionalized Graphene. Compos. B.: Eng., 120.
  • Li, Q., Wang, Y. J., Zhang, S., Xu, W. W., & Wang, Z. B. (2019). Investigation on hydrodynamic superposition loading mechanism and micro-hydrodynamic effect of textured water-lubricated bearings. Surface Technology, 48, 180.
  • Luka, S., Franci, P., & Mitjan, K. (2019). Determination of friction coefficient in cutting processes: Comparison between open and closed tribometers. Procedia CIRP, 82, 101–106.
  • Lyu, P., Chen, Y., Liu, Z., Cai, J., Zhang, C., Jin, Y., Guan, Q., & Zhao, N. (2020). Surface modification of CrFeCoNiMo high entropy alloy induced by high-current pulsed electron beam. Appl. Surf. Sci., 504(8), 1–26.
  • Malaki, M., & Varma, R. S. (2020). Mechanotribological Aspects of MXene-Reinforced Nanocomposites. Adv. Mater., 32, 2003154–2003174.
  • Marian, M., Song, G. C., Wang, B., Fuenzalida, V. M., Kraus, S., Merle, B., Tremmel, S., Wartzack, S., Yu, J., & Rosenkranz, A. (2020). Effective usage of 2D MXene nanosheets as solid lubricant – Influence of contact pressure and relative humidity. Appl. Surf. Sci., 531, 147311–147321.
  • Martin, J. H., Yahata, B. D., Hundley, J. M., Mayer, J. A., Schaedler, T. A., & Pollock, T. M. (2017). 3D printing of high-strength aluminium alloys. Nature, 549, 365–369.
  • Miao, J., Guo, T., Ren, J., Zhang, A., Su, B., & Meng, J. (2018). Optimization of mechanical and tribological properties of FCC CrCoNi multi-principal element alloy with Mo addition. Vacuum, 149, 324–330.
  • Mohamed, M. E., & Abd-El-Nabey, B. A. (2022). Corrosion performance of a steel surface modified by a robust graphene-based superhydrophobic film with hierarchical roughness. Journal of Materials Science, 57, 11376–11391.
  • Mohseni, H., Nandwana, P., Tsoi, A., Banerjee, R., & Scharf, T. W. (2015). In situ nitrided titanium alloys: Microstructural evolution during solidification and wear. Acta Mater., 83, 61–74.
  • Mutyala, K. C., Wu, Y. A., Erdemir, A., & Sumant, A. V. (2019). Graphene - MoS2 ensembles to reduce friction and wear in DLC-Steel contacts. Carbon, 146, 1–16.
  • Nassar, A. E., & Nassar, E. E. (2011). Design and fabrication of a wear testing machine. Leonardo Electronic Journal of Practices and Technologies, 19, 39–48.
  • Nazir, M. H., Khan, Z. A., Saeed, A., Siddaiah, A., & Menezes, P. L. (2018). Synergistic wear-corrosion analysis and modelling of nanocomposite coatings. Tribology International, 121, 30–44.
  • Ogedengbe, T. S., Yussouff, A. A., & Adanikin, A. (2018). design and development of a wear testing machine for manufacturing laboratories. 1st fuoye international engineering conference. Pp. 77–86.
  • Ooi, S., & Bhadeshia, H. K. D. H. (2012). Duplex Hardening of Steels for Aeroengine Bearings. ISIJ Int., 52, 1927–1934.
  • Parande, G., Manakari, V., Meenashisundaram, G. K., & Gupta, M. (2016). Enhancing the hardness/compression/damping response of magnesium by reinforcing with biocompatible silica nanoparticulates. Int. J. Mater. Res., 107, 1091–13.
  • Parchovianska, I., Parchovianska, M., Kankova, H., Nowicka, A., & Galusek, D. (2021). Hydrothermal corrosion of double layer glass/ceramic coatings obtained from preceramic polymers. Materials, 14, 1–18.
  • Parchovianska, M., Parchovianska, I., Svancarek, P., Medved, D., Lenz-Leite, M., Motz, G., & Galusek, D. (2021). High-temperature oxidation resistance of PDC coatings in synthetic Air and water vapor atmospheres. Molecules, 26, 1–17.
  • Patrick, J. F., Robb, M. J., Sottos, N. R., Moore, J. S., & White, S. R. (2016). Polymers with autonomous life-cycle control. Nature, 540, 363–370.
  • Paydar, H., Amini, K., & Akhbarizadeh, A. (2014). Investigating the effect of deep cryogenic heat treatment on the wear behavior of 100Cr6 alloy steel. Kovove Materialy-Metallic Materials, 52, 163–169.
  • Pilliar, R. M. (2009). Metallic Biomaterials. In N. Roger (Ed.), Biomedical materials (pp. 41–81). Springer Springer Science and Business Media.
  • Pinto, G. F., Baptista, A., Silva, F., Porteiro, J., Miguez, J., & Alexandre, R. (2021). Study on the Influence of the Ball Material on Abrasive Particles’ Dynamics in Ball-Cratering Thin Coatings Wear Tests. Materials, 14(3), 1–28.
  • Prabhu, P., Suresh Kumar, M., Singh, A. P., & Siva, K. (2014). Experimental Study and Verification of Wear for Glass Reinforced Polymer using ANSYS. Global Journal of Researches in Engineering: A Mechanical and Mechanics Engineering, 14(3), 1–13.
  • Profito, F. J., Vlădescu, S. C., Reddyhoff, T., & Dini, D. (2017). Transient experimental and modeling studies of laser-textured micro-grooved surfaces with a focus on piston-ring cylinder liner contacts. Tribol Int., 113:125–.
  • Psyllaki, P. P. (2019). An Introduction to Wear Degradation Mechanisms of Surface-Protected Metallic Components. Metals, 9, 1057–1074.
  • Qian, J. C., Zhou, Z. F., Yan, C., Li, D. J., Li, K. Y., Descartes, S., Chromik, R., Zhang, W. J., Bello, I., & Martinu, L. (2015). Tailoring the Mechanical and Tribological Properties of Sputtered Boron Carbide Films via the B1-Cx Composition. Surf. Coat. Technol., 267, 2–7.
  • Rai, P. K., Shekhar, S., & Mondal, K. (2018). Effects of grain size gradients on the fretting wear of a specially-processed low carbon steel against AISI E52100 bearing steel. Wear, 412–413, 1–13.
  • Reniel, E. Y., Luis, N. H., Omar, Z. M., Nelson, C. O., & Acacio, F. N. (2014). Design and fabrication of a machine for test in abrasive wearing according to ASTM G65 standard. American Journal of Materials Science and Application, 2(5), 86–90.
  • Rosenkranz, A., Costa, H. L., Baykara, M. Z., & Martini, A. (2021). Synergetic effects of surface texturing and solid lubricants to tailor friction and wear - a review. Tribol. Int., 155, 1–21.
  • Rosenkranz, A., Costa, H. L., Profito, F., Gachot, C., Medina, S., & Dini, D. (2019). Influence of surface texturing on hydrodynamic friction in plane converging bearings - An experimental and numerical approach. Tribol Int., 134, 190–204.
  • Rosenkranz, A., Grützmacher, P. G., Gachot, C., & Costa, H. L. (2019). Surface Texturing in Machine Elements - A Critical Discussion for Rolling and Sliding Contacts. Adv Eng Mater., 21(8), 1–20.
  • Rosler, F., Gunther, K., & Lasagni, A. (2018). In-volume structuring of a bilayered polymer foil using direct laser interference patterning. Appl. Surf. Sci., 440, 1166–1171.
  • Sahasrabudhe, H., & Bandyopadhyay, A. (2014). Laser processing of Fe based bulk amorphous alloy coating on zirconium. Surf. Coat. Technol., 240, 286–292.
  • Scharf, T. W., Kotula, P., & Prasad, S. V. (2010). Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings. Acta Mater., 58, 4100–4109.
  • Senthilkumar, D. (2016). Cryogenic Treatment: Shallow and Deep. First Edition; Encyclopedia of Iron. Steel, and Their Alloys, CRC Press: Pp, 1-13.
  • Sharma, V., Prakash, U., & Kumar, B. V. M. (2015). Surface Composites by Friction Stir Processing: A Review. J. Mater. Process. Technol., 224, 117–134.
  • Shen, Y., Luo, J., Liao, B., Chen, L., Zhang, X., Zhao, Y., & Pang, P. (2022). Enhanced Anti-Tribocorrosion Performance of Ti-DLC Coatings Deposited by Filtered Cathodic Vacuum Arc with theOptimization of Bias Voltage. Coatings, 12, 1–14.
  • Siddaiah, A., Mao, B., Liao, Y., & Menezes, P. (2018). Surface characterization and tribological performance of laser shock peened steel surfaces. Surface and Coatings Technology, 351, 188–197.
  • Siddaiah, A., Mao, B., Liao, Y., & Menezes, P. (2018). Surface characterization and tribological performance of laser shock peened steel surfaces. Surface & Coatings Technology, 351, 188–197.
  • Siddaiah, A., Mao, B., Liao, Y., & Menezes, P. (2019). Effect of laser shock peening on the wear–corrosion synergistic behavior of an az31b magnesium alloy. Journal of Tribology, 142(4), 1–22.
  • Simmonds, M., Savan, A., Pfluger, E., & van, S. (2000). Mechanical and tribological performance of MoS2 co-sputtered composites. Surf. Coat. Technol, 126, 15–24.
  • Singh, H., Mutyala, K., Mohseni, H., Scharf, T. W., Evans, R., & Doll, G. (2015). Tribological Performance and Coating Characteristics of Sputter-Deposited Ti-Doped MoS2 in Rolling and Sliding Contact. Tribol. Trans., 58, 767–777.
  • Sreerama Reddy, T. V., Sorna, T. K., Venkatarama, M. R., & Ajaykumar, B. S. (2008). Performance studies of deep cryogenic treated tungsten carbide cutting tool inserts on machining steel. Tribology - Materials Surfaces & Interfaces, 2(2), 92–98.
  • Suarez, S., Rosenkranz, A., Gachot, C., & Mucklich, F. (2014). Enhanced tribological properties of MWCNT/Ni bulk composites – Influence of processing on friction and wear behaviour. Carbon, 66, 164–171.
  • Suresh, K. S., Geetha, M., Richard, C., Landoulsi, J., Ramasawmy, H., Suwas, S., & Asokamani, R. (2012). Effect of equal channel angular extrusion on wear and corrosion behavior of the orthopedic Ti-13Nb-13Zr alloy in simulated body fluid. Mater. Sci. Eng. C, 32, 763–771.
  • Taher, M., Mao, F., Berastegui, P., Andersson, A. M., & Jansson, U. (2018). Tribol. Int., 119, 680–687.
  • Tang, W., Zhou, Y., Zhu, H., & Yang, H. (2013). The effect of surface texturing on reducing the friction and wear of steel under lubricated sliding contact. Appl. Surf. Sci., 273, 199–204.
  • Tayebi, N., Zhang, Y., Chen, R. J., Tran, Q., & Chen, R. (2010). An Ultraclean Tip-Wear Reduction Scheme for Ultrahigh Density Scanning Probe-based Data Storage. ACS Nano, 4(10), 5713–5720.
  • Tian, F., Qian, X., & Villarrubia, J. (2008). Blind Estimation of General Tip Shape in AFM Imaging. Ultramicroscopy, 109(1), 44–53.
  • Tinnemann, V., Hernandez, L., Fischer, S., Arzt, E., Bennewitz, R., & Hensel, R. (2019). In Situ Observation Reveals Local Detachment Mechanisms and Suction Effects in Micropatterned Adhesives. Advanced Functional Materials, 29(14), 1–11.
  • Torgerson, T. B., Mantri, S. A., Banerjee, R., & Scharf, T. W. (2019). Room and elevated temperature sliding wear behavior and mechanisms of additively manufactured novel precipitation strengthened metallic composites. Wear, 426–427, 942–951.
  • Vadivel, K., & Rudramoorthy, R. (2009). Performance analysis of cryogenically treated coated carbide inserts. Int J Adv Manuf Technol, 42, 222–232.
  • Vasudev, H., Singh, G., Bansal, A., Vardhan, S., & Thakur, L. (2019). Microwave heating and its applications in surface engineering: A review. Mater. Res. Express, 6, 102001.
  • Vega, F., Pelaez, R., Kuhn, T., Afonso, C., Recio Sanchez, G., & Martin-Palma, R. (2014). Ultraviolet laser patterning of porous silicon. J. Appl. Phys., 115, 184902–184908.
  • Voevodin, A. A., O’Neill, J. P., & Zabinski, J. S. (1999). Tribological performance and tribochemistry of nanocrystalline WC/amorphous diamond-like carbon composites. Thin Solid Films, 342, 194–202.
  • Wakuda, M., Yamauchi, Y., Kanzaki, S., & Yasuda, Y. (2003). Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear, 254, 356–363.
  • Wang, W., Du, M., Zhang, X., Luan, C., & Tian, Y. (2021). Preparation and Properties of Mo Coating on H13 Steel by Electro Spark Deposition Process. Materials, 14(13), 1–16.
  • Wang, H., Gee, M., Qiu, Q., Zhang, H., Liu, X., Nie, H., Song, X., & Nie, Z. (2019). Grain Size Effect on Wear Resistance of WC-Co Cemented Carbides under Different Tribological Conditions. J. Mater. Sci. Technol., 35, 2435–2446.
  • Wang, H., Huang, Y., Zhang, W., & Ostendorf, A. (2018). Investigation of multiple laser shock peening on the mechanical property and corrosion resistance of shipbuilding 5083Al alloy under a simulated seawater environment. Appl Opt., 57, 6300–6308.
  • Wang, Y. M., Voisin, T., McKeown, J. T., Ye, J., Calta, N. P., Li, Z., Zeng, Z., Zhang, Y., Chen, W., Roehling, T. T., Ott, R. T., Santala, M. K., Depond, P. J., Matthews, M. J., Hamza, A. V., & Zhu, T. (2018). Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater., 17(1), 63–71. https://doi.org/10.1038/nmat5021
  • Wang, B., Zheng, M., & Zhang, W. (2020). Analysis and Prediction of Wear Performance of Different Topography Surface. Materials (Basel), 13(22), 5056–5071.
  • Wu, Y., Zhao, W., Wang, W., Zhang, Y., & Xue, Q. (2016). Novel structured anodic oxide films containing surface layers and porous sublayers showing excellent wear resistance performance. RSC Adv., 6, 94074–94084.
  • Xing, Y. Z., Wang, G., Zhang, Y., Chen, Y. N., & Dargusch, M. (2017). The effect of surface texturing on reducing the friction and wear of steel under lubricated sliding contact. Int. J. Adv. Manuf. Technol., 93(881), 2327–2335.
  • Xu, G., Huang, P., Wei, Z., Feng, Z., & Zu, G. (2022). Microstructural variations and mechanical properties of deep cryogenic treated AISI M35 high-speed steel tempered at various temperatures. J. Mater. Res. Technol.,17, 3371–3383.
  • Ye, M., Zhang, G., Ba, T., Wang, Y., Wang, X., & Liu, Z. (2016). Microstructure and tribological properties of MoS2+Zr composite coatings in high humidity environment. Appl. Surf. Sci., 367, 140–146.
  • Yin, X., Jin, J., Chen, X., Rosenkranz, A., & Luo, J. (2019). Ultra-Wear-Resistant MXene-Based Composite Coating via in Situ Formed Nanostructured Tribofilm. ACS Appl. Mater. Interfaces, 11, 32569–32576.
  • Yong, J., Ding, C., & Qiong. (2012). Effect of cryogenic thermocycling treatment on the structure and properties of magnesium alloy AZ91. Metal Science and Heat Treatment, 53(11-12). 18-21.
  • Yousif, I. F., & Ataiwi, A. H. (2018). Construction of slurry jet erosion tester and the effect of particle size on slurry erosion. Kufa Journal of Engineering, 9(3), 17–25.
  • Zabinski, J. S., Donley, M. S., Walck, S. D., Schneider, T. R., & McDevitt, N. T. (1995). The effects of dopants on the chemistry and tribology of sputter-deposited MoS2 films, Tribol. Trans, 36, 894–904.
  • Zafari, A., Ghasemi, H. M., & Mahmudi, R. (2013). Effect of rare earth elements addition on the tribological behavior of AZ91D magnesium alloy at elevated temperatures. Wear, 303, 98–108.
  • Zhang, H., Sun, M., Liu, Y., Ma, D., Xu, B., Huang, M., Li, D., & Li, Y. (2021). Ultrafine-grained dual-phase maraging steel with high strength and excellent cryogenic toughness. Acta Materialia, 211, 1–14.
  • Zhou, K., & Liu, B. O. (2022). Molecular dynamics simulation: Fundamentals and Applications. 1st. Elsevier.
  • Zhou, L., Min, N., Li, H., & Wu, X. (2019). Nanoscratch and internal friction investigations of deep cryogenic treated M2 high-speed steel. Heat Treatment and Surface Engineering, 1(3–4), 1–7.
  • Zimmer, M., S-C, V., Mattsson, L., Fowell, M., & Reddyhoff, T. (2021). Shear-area variation: A mechanism that reduces hydrodynamic friction in macro-textured piston ring liner contacts. Tribol Int., 161, 1–16.
  • Zwahr, C., Helbig, R., Werner, C., & Lasagni, A. (2019). Fabrication of multifunctional titanium surfaces by producing hierarchical surface patterns using laser-based ablation methods. Sci. Rep., 9, 6721–6734.