782
Views
1
CrossRef citations to date
0
Altmetric
Materials Engineering

Elemental compositional modeling of magnetic ordering temperature for spinel ferrite magnetocaloric compounds using intelligent algorithms

Article: 2172790 | Received 02 Nov 2022, Accepted 20 Jan 2023, Published online: 24 Feb 2023

References

  • Alqahtani, A. (2021). Engineering the energy gap of cupric oxide nanomaterial using extreme learning machine and stepwise regression algorithms. Journal of Nanomaterials, 2021, 1–19. https://doi.org/10.1155/2021/4797686
  • Anwar, M. S., Ahmed, F., & Koo, B. H. (2014). Enhanced relative cooling power of Ni1−xZnxFe2O4 (0.0≤x≤0.7) ferrites. Acta Materialia, 71, 100–107. https://doi.org/10.1016/j.actamat.2014.03.002
  • Bahhar, S., Boutahar, A., Omari, L. H., Lemziouka, H., Hlil, E. K., Bioud, H., & Dhahri, E. (2021, February). Journal of magnetism and magnetic materials structural, magnetic and magnetocaloric properties of TMCeFeO 4 (TM = Mn, Co) spinel ferrites powders. Journal of Magnetism and Magnetic Materials, 539, 168416. https://doi.org/10.1016/j.jmmm.2021.168416
  • Bin Huang, G., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing Vol. 70(1–3), 489–501.
  • Bouhbou, M., Džubinská, A., Reiffers, M., Bessais, L., Lemziouka, H., Lassri, M., Tuyikeze, V., Fraija, F., Sajeddine, M., & Lassri, H. (2022). Magnetic, structural and magnetocaloric effect investigations on the substituted spinel Mg1−xZnxFe2O4 (0 ≤ x ≤ 1) prepared by sol-gel method. Journal of Alloys and Compounds, 896, 162836. https://doi.org/10.1016/j.jallcom.2021.162836
  • Bouhbou, M., Moubah, R., Belayachi, W., Belayachi, A., Bessais, L., & Lassri, H. (2017). Magnetic and magnetocaloric properties in sulfospinel Cd 1 À x Zn x Cr 2 S 4. 688, 84–88.
  • Chi Linh, D., Nguyen Thi, H., Huu Duc, N., Nguyen Manh, A., Seong-Cho, Y., & Dang Thanh, T. (2018). Na-doped La0. 7ca0. 3mno3 compounds exhibiting a large magnetocaloric effect near room temperature. Physica. B, Condensed Matter, 532, 155–160.
  • Dhagat, S., & Jujjavarapu, S. E. (2021, April). Green synthesis of bioemulsifier and exopolysaccharides by Brevibacillus borstelensis and process parameters optimization using response surface model, genetic algorithm and NSGA. Journal of Environmental Management, 291, 112667. https://doi.org/10.1016/j.jenvman.2021.112667
  • Durgam, S., Bhosale, A., Bhosale, V., Deshpande, R., & Sutar, P. (2020). Support vector regression method for predicting temperatures of heat sources cooled by forced convection in a horizontal channel. Thermal Science and Engineering Progress, 20, 100725. https://doi.org/10.1016/j.tsep.2020.100725
  • Emmanuel Oyeneyin, O., Samuel Obadawo, B., Alani Olanrewaju, A., Olakunle Owolabi, T., Adedamola Gbadamosi, F., Ipinloju, N., & Omonipo Modamor, H. (2021). “Predicting the bioactivity of 2- alkoxycarbonylallyl esters as potential antiproliferative agents against pancreatic cancer (MiaPaca-2) cell lines: GFA-based QSAR and ELM-based models with molecular docking.
  • Fan, G., Yu, M., Dong, S., Yeh, Y., & Hong, W. (2021, September). Forecasting short-term electricity load using hybrid support vector regression with grey catastrophe and random forest modeling. Utilities Policy, 73, 101294. https://doi.org/10.1016/j.jup.2021.101294
  • Felhi, R., Omrani, H., Koubaa, M., Koubaa, W. C., & Cheikhrouhou, A. (2018). Enhancement of magnetocaloric effect around room temperature in Zn 0. 7 Ni 0. 3-x Cu x Fe 2 O 4 (0 x 0. 2) spinel ferrites. Journal of Alloys and Compounds, 758, 237–246. https://doi.org/10.1016/j.jallcom.2018.05.078
  • Fortas, N., Belkahla, A., Ouyahia, S., Dhahri, J., Hlil, E. K., & Taibi, K. (2020, January). Effect of Ni substitution on the structural, magnetic and magnetocaloric properties of Zn 0. 5-x Ni x Mg 0. 5 Fe 2 O 4 (x ¼ 0, 0. 125 and 0. 250) ferrites. Solid State Sciences, 101, 106137. https://doi.org/10.1016/j.solidstatesciences.2020.106137
  • Gharsalli, L., & Guérin, Y. (2021, February). Mechanical sizing of a composite launcher structure by hybridizing a genetic algorithm with a local search method. Composites Part C: Open Access, 5, 100125. https://doi.org/10.1016/j.jcomc.2021.100125
  • Hamad, M. A., Hemeda, O. M., Alamri, H. R., & Mohamed, A. M. (2021). Extremely relative cooling power of Cu 0. 35 Zn 0. 65 Fe 2 O 4. Phys. Lett. A, 394, 127204. https://doi.org/10.1016/j.physleta.2021.127204
  • Hcini, F., Hcini, S., Almoneef, M. M., Dhaou, M. H., Alshammari, M. S., Mallah, A., Zemni, S., Lefi, N., & Bouazizi, M. L. (2021). Thermal, microstructural, optical, magnetic and magnetocaloric studies for Ni 0. 5 Mn 0. 5 Cr 2 O 4 chromite spinel prepared using sol-gel method. Journal of Molecular Structure, 1243, 130769. https://doi.org/10.1016/j.molstruc.2021.130769
  • Hcini, S., Kouki, N., Omri, A., Dhahri, A., & Lamjed, M. (2018, April). Journal of magnetism and magnetic materials Effect of sintering temperature on structural, magnetic, magnetocaloric and critical behaviors of Ni-Cd-Zn ferrites prepared using sol-gel method. Journal of Magnetism and Magnetic Materials, 464, 91–102. https://doi.org/10.1016/j.jmmm.2018.05.045
  • Holland, J. H. (1992, July). Genetic Algorithms. Scientific American, 267(1), 66–72. https://doi.org/10.1038/scientificamerican0792-66
  • J. Prottasha, N., J. Prottasha, N., Prottasha, N. J., R. M. Azmi, Z., Azmi, Z. R. M., & Azmi, Z. R. M. (2021). Support directional shifting vector: a direction based machine learning classifier. Emerging Science Journal, 5(5), 700–713. https://doi.org/10.28991/esj-2021-01306
  • Li, L., Liu, Z., Tseng, M., Jantarakolica, K., & Lim, M. K. (2021, August). Using enhanced crow search algorithm optimization-extreme learning machine model to forecast short-term wind power. Expert Systems with Applications, 184(2020), 115579. https://doi.org/10.1016/j.eswa.2021.115579
  • Li, Z. X., Rao, S. W., & Zhao, Y. (2021, April). The optimization of soil parameters of horizontally multilayered soil in frequency domain by genetic algorithm with considering dynamic state field. Electric Power Systems Research, 198, 107279. https://doi.org/10.1016/j.epsr.2021.107279
  • Li, C., Yongjun, W., Lu, H., Shuai, C., Qi, Z., Leijing, Y., & Xiangjun, X. (2022, November). Optical fiber nonlinearity equalizer with support vector regression based on perturbation theory. Opt. Commun, 507 (2021), 127627. https://doi.org/10.1016/j.optcom.2021.127627
  • Masina, P., Moyo, T., & Abdallah, M. I. (2015). Journal of magnetism and magnetic materials synthesis, structural and magnetic properties of Zn x Mg 1 À x Fe 2 O 4 nanoferrites. 381, 41–49.
  • Mohammed Tawsif, K. C., Ab Aziz, N. A., Raja, J. E., Nawawi, S. W. B., & Rani, P. (2022). Evaluation of Machine Learning Algorithms for Emotions Recognition using Electrocardiogram. Emerging Science Journal, 7(1), 147–161.
  • Oloore, L. E., Owolabi, T. O., Fayose, S., Adegoke, M., Akande, K. O., & Olatunji, S. O. (2018). Modeling of semiconductors refractive indices using hybrid chemometric model. Modelling, Measurement and Control A, 91(3), 95–103. https://doi.org/10.18280/mmc_a.910301
  • Olubosede, O., Amiruddin, M., Rahman, A., Alqahtani, M., Souiyah, A., Mouftahou, T. O. O., Latif, B., Adeyemi Oke, W., & Aldhafferi, N. (2022). Tailoring the energy harvesting capacity of zinc selenide semiconductor nanomaterial through optical band gap. Crystals, 12(36), 1–13.
  • Oumezzine, E., Hcini, S., Baazaoui, M., Hlil, E. K., & Oumezzine, M. (2015). Structural, magnetic and magnetocaloric properties of Zn0.6−xNixCu0.4Fe2O4 ferrite nanoparticles prepared by Pechini sol-gel method. Powder Technology, 278, 189–195. https://doi.org/10.1016/j.powtec.2015.03.022
  • Owolabi, T. O. (2019a). Determination of the velocity of detonation of primary explosives using genetically optimized support vector regression. Propellants, Explosives, Pyrotechnics, 44(10), 1282–1292. https://doi.org/10.1002/prep.201900077
  • Owolabi, T. O. (2019b). Determination of the velocity of detonation of primary explosives using genetically optimized support vector regression. In Propellants, Explos. Pyrotech. (pp. 1–12). Spriger.
  • Owolabi, T. O. (2020, June). Extreme learning machine and swarm- based support vector regression methods for predicting crystal lattice parameters of pseudo-cubic/cubic perovskites Extreme learning machine and swarm-based support vector regression methods for predicting crystal lat. J. Appl. Phys, 245107. https://doi.org/10.1063/5.0008809
  • Owolabi, T. O., Akande, K. O., Olatunji, S. O., Aldhafferi, N., & Alqahtani, A. (2019a). Ensemble-based support vector regression with gravitational search algorithm optimization for estimating magnetic relative cooling power of manganite refrigerant in magnetic refrigeration application. Journal of Superconductivity and Novel Magnetism, 32(7), 2107–2118. https://doi.org/10.1007/s10948-018-4930-2
  • Owolabi, T. O., Akande, K. O., Olatunji, S. O., Aldhafferi, N., & Alqahtani, A. (2019b). Support vector regression ensemble for effective modeling of magnetic ordering temperature of doped manganite in magnetic refrigeration. Journal of Low Temperature Physics, 195(1–2), 1–2. https://doi.org/10.1007/s10909-019-02153-2
  • Owolabi, T. O., Amiruddin, M., & Rahman, A., “Prediction of band gap energy of doped graphitic carbon nitride using genetic algorithm-based support vector regression and extreme learning machine,” pp. 1–17, 2021. MDPI.
  • Owolabi, T. O., & Gondal, M. A. (2015). Estimation of surface tension of methyl esters biodiesels using computational intelligence technique. Applied Soft Computing, 37, 227–233. https://doi.org/10.1016/j.asoc.2015.08.028
  • Owolabi, T. O., & Gondal, M. A. (2018). Development of hybrid extreme learning machine based chemo-metrics for precise quantitative analysis of LIBS spectra using internal reference pre-processing method. Analytica Chimica Acta, 1030, 33–41. https://doi.org/10.1016/j.aca.2018.05.029
  • Oyeneyin, O. E., Obadawo, B. S., Metibemu, D. S., Owolabi, T. O., Olanrewaju, A. A., Orimoloye, S. M., & Olusayo, O. (2022). An exploration of the antiproliferative potential of chalcones and dihydropyrazole derivatives in prostate cancer via androgen receptor: Combined QSAR, machine learning, and molecular docking techniques. Physical Chemistry Research, 10(2), 211–223.
  • Pablo, J., López, J., & Maldonado, S. (2021). Simultaneous model construction and noise reduction for hierarchical time series via Support Vector Regression. Knowledge-Based Systems, 232, 107492. https://doi.org/10.1016/j.knosys.2021.107492
  • Sagar, T. V., Rao, T. S., & Babu, K. C, (2019, December). Effect of calcination temperature on optical, magnetic and dielectric properties of Sol-Gel synthesized Ni 0. 2 Mg 0. 8-x Zn x Fe 2 O 4 (x = 0. 0 – 0. 8). 46.11515–11529. 2020
  • Science, N., Phenomena, C., Sabzekar, M., Mohammad, S., & Hasheminejad, H. (2021). Chaos, Solitons and Fractals. Chaos, Solitons Fractals Interdiscip. J. Nonlinear Sci. Nonequilibrium Complex Phenom, 144, 110738.
  • Sujatha, V. D. A., Govindaraju, L., Shivakumar, N., & Devaraj, V. (2021). Fuzzy Knowledge Based System for Suitability of Soils in Airfield Applications. Civil Engineering Journal, 7(1), 140–152. https://doi.org/10.28991/cej-2021-03091643
  • Vapnik, V. N. (1995, June). The Nature of Statistical Learning Theory. In Springer-Verlag New York, Inc (pp. 70–92). Spriger.
  • Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience.
  • Zhang, H., Zhang, Y., Dai, D., Cao, M., & Shen, W. (2015). Modelling and optimization of the superconducting transition temperature. Materials & Design, 92(2016), 371–377. https://doi.org/10.1016/j.matdes.2015.12.081
  • Zhao, J., Liu, X., Kan, X., Liu, C., Wang, W., Hu, J., Lv, Q., Huang, J., & Shazeda, M. (2021). Investigating the structural, magnetic, magnetocaloric and critical behavior. Ceramics International, 47(6), 7906–7917. https://doi.org/10.1016/j.ceramint.2020.11.138